Emma K C Symonds, Alfonso J Schmidt, Alexander W Brown, Margaret J Currie, Patries M Herst, Kathryn E Hally, Kirsty M Danielson
{"title":"三维体外伤口愈合模型的建立以评估adsc - ev对血管化的影响。","authors":"Emma K C Symonds, Alfonso J Schmidt, Alexander W Brown, Margaret J Currie, Patries M Herst, Kathryn E Hally, Kirsty M Danielson","doi":"10.1177/19373341251383899","DOIUrl":null,"url":null,"abstract":"<p><p>Angiogenesis is critical for effective wound healing and relies on the successful coordination of various cell types, including endothelial cells, macrophages, and fibroblasts. Adipose-derived stem cell extracellular vesicles (ADSC-EVs) have demonstrated proangiogenic properties and have been posited as a novel therapeutic to aid wound healing; however, their functional impact within human-derived multicellular models remains largely uncharacterized. This study explores the development and application of a 3D multicellular <i>in vitro</i> model to assess the effects of ADSC-EVs on vascularization in the context of wound healing. 3D multicellular <i>in vitro</i> models were developed by coculturing human umbilical vein endothelial cells (HUVECs), monocyte-derived macrophages, and fibroblasts within Matrigel to recapitulate the <i>in vivo</i> wound healing microenvironment. A five-color confocal microscopy panel was developed to visualize each cell type and EVs within the models. The optimized models were then treated with ADSC-EVs or control to determine their impact on angiogenesis and cell colocalization. We determined that vessel formation was significantly enhanced when HUVECs were cocultured in multicellular models compared with monocultures, with the greatest effect observed in the full three-cell-type model. This effect was even more pronounced with the addition of ADSC-EVs. ADSC-EV treatment also enhanced macrophage colocalization within endothelial structures. This study developed a multicellular model that can be used for future work assessing wound healing <i>in vitro</i> and will be additive to currently used single-cell and <i>in vivo</i> models. We have applied these models to demonstrate that ADSC-EVs significantly enhance tube formation in HUVECs and the development of tissue-like structures in multicell systems, highlighting their potential as a promising therapeutic approach for improving wound healing.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a 3D <i>in Vitro</i> Wound Healing Model to Assess the Effect of ADSC-EVs on Vascularization.\",\"authors\":\"Emma K C Symonds, Alfonso J Schmidt, Alexander W Brown, Margaret J Currie, Patries M Herst, Kathryn E Hally, Kirsty M Danielson\",\"doi\":\"10.1177/19373341251383899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiogenesis is critical for effective wound healing and relies on the successful coordination of various cell types, including endothelial cells, macrophages, and fibroblasts. Adipose-derived stem cell extracellular vesicles (ADSC-EVs) have demonstrated proangiogenic properties and have been posited as a novel therapeutic to aid wound healing; however, their functional impact within human-derived multicellular models remains largely uncharacterized. This study explores the development and application of a 3D multicellular <i>in vitro</i> model to assess the effects of ADSC-EVs on vascularization in the context of wound healing. 3D multicellular <i>in vitro</i> models were developed by coculturing human umbilical vein endothelial cells (HUVECs), monocyte-derived macrophages, and fibroblasts within Matrigel to recapitulate the <i>in vivo</i> wound healing microenvironment. A five-color confocal microscopy panel was developed to visualize each cell type and EVs within the models. The optimized models were then treated with ADSC-EVs or control to determine their impact on angiogenesis and cell colocalization. We determined that vessel formation was significantly enhanced when HUVECs were cocultured in multicellular models compared with monocultures, with the greatest effect observed in the full three-cell-type model. This effect was even more pronounced with the addition of ADSC-EVs. ADSC-EV treatment also enhanced macrophage colocalization within endothelial structures. This study developed a multicellular model that can be used for future work assessing wound healing <i>in vitro</i> and will be additive to currently used single-cell and <i>in vivo</i> models. We have applied these models to demonstrate that ADSC-EVs significantly enhance tube formation in HUVECs and the development of tissue-like structures in multicell systems, highlighting their potential as a promising therapeutic approach for improving wound healing.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19373341251383899\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251383899","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Development of a 3D in Vitro Wound Healing Model to Assess the Effect of ADSC-EVs on Vascularization.
Angiogenesis is critical for effective wound healing and relies on the successful coordination of various cell types, including endothelial cells, macrophages, and fibroblasts. Adipose-derived stem cell extracellular vesicles (ADSC-EVs) have demonstrated proangiogenic properties and have been posited as a novel therapeutic to aid wound healing; however, their functional impact within human-derived multicellular models remains largely uncharacterized. This study explores the development and application of a 3D multicellular in vitro model to assess the effects of ADSC-EVs on vascularization in the context of wound healing. 3D multicellular in vitro models were developed by coculturing human umbilical vein endothelial cells (HUVECs), monocyte-derived macrophages, and fibroblasts within Matrigel to recapitulate the in vivo wound healing microenvironment. A five-color confocal microscopy panel was developed to visualize each cell type and EVs within the models. The optimized models were then treated with ADSC-EVs or control to determine their impact on angiogenesis and cell colocalization. We determined that vessel formation was significantly enhanced when HUVECs were cocultured in multicellular models compared with monocultures, with the greatest effect observed in the full three-cell-type model. This effect was even more pronounced with the addition of ADSC-EVs. ADSC-EV treatment also enhanced macrophage colocalization within endothelial structures. This study developed a multicellular model that can be used for future work assessing wound healing in vitro and will be additive to currently used single-cell and in vivo models. We have applied these models to demonstrate that ADSC-EVs significantly enhance tube formation in HUVECs and the development of tissue-like structures in multicell systems, highlighting their potential as a promising therapeutic approach for improving wound healing.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.