{"title":"基于高分辨率超声成像技术评价PCOS患者卵巢微血管结构。","authors":"Xianyi Chen, Guoxu Lv, Jian Lv, Ruoyu Wang, Jinyi Zhu, Hongying Kuang","doi":"10.1016/j.slast.2025.100356","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystic Ovary Syndrome (PCOS) patients often have ovarian microcirculatory disorders. Traditional color Doppler imaging of microvascular is not sensitive enough and is prone to missed detection or artifact interference. This study is based on a high-frequency probe combined with SMI (Superb Microvascular Imaging) and ultrasound contrast imaging to achieve high signal-to-noise ratio acquisition and dynamic quantification of low-speed blood flow in microvascular, filling the gap in existing technology. This study sets low-pass filtering and low PRF (Pulse Repetition Frequency) to enhance the detection of low-speed flow signals in microvascular. SMI and CEUS (Contrast-Enhanced Ultrasound) sequences are collected in sequence, and the time points are calibrated synchronously on the same section to achieve multimodal image fusion. The ovarian area is semi-automatically segmented based on the U-Net model, and the ROI (Region of Interest) containing the vascular structure is extracted. The vascular density, average diameter, and number of branches are calculated using self-developed image analysis software, and the feature vector is derived. The CEUS time-intensity curve is fitted with a double exponential, and dynamic perfusion parameters such as peak time and perfusion half-life are extracted for microcirculation evaluation and hemodynamic analysis. The experiment shows that in the 10 ovarian ROIs analyzed, the vascular density ranges from 5.43% to 8.45%; the average diameter is 5.88 to 6.52 pixels; the branch number consistency difference rate is less than 3%. The perfusion half-life is distributed between 21.8 and 25.1 seconds, and the peak time of the PCOS group is delayed by 0.5 seconds compared with the normal group, indicating that there are significant differences in their microvascular structure and perfusion function.</p>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":" ","pages":"100356"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Ovarian Microvascular Structure in PCOS Patients Based on High-resolution Ultrasound Imaging Technology.\",\"authors\":\"Xianyi Chen, Guoxu Lv, Jian Lv, Ruoyu Wang, Jinyi Zhu, Hongying Kuang\",\"doi\":\"10.1016/j.slast.2025.100356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycystic Ovary Syndrome (PCOS) patients often have ovarian microcirculatory disorders. Traditional color Doppler imaging of microvascular is not sensitive enough and is prone to missed detection or artifact interference. This study is based on a high-frequency probe combined with SMI (Superb Microvascular Imaging) and ultrasound contrast imaging to achieve high signal-to-noise ratio acquisition and dynamic quantification of low-speed blood flow in microvascular, filling the gap in existing technology. This study sets low-pass filtering and low PRF (Pulse Repetition Frequency) to enhance the detection of low-speed flow signals in microvascular. SMI and CEUS (Contrast-Enhanced Ultrasound) sequences are collected in sequence, and the time points are calibrated synchronously on the same section to achieve multimodal image fusion. The ovarian area is semi-automatically segmented based on the U-Net model, and the ROI (Region of Interest) containing the vascular structure is extracted. The vascular density, average diameter, and number of branches are calculated using self-developed image analysis software, and the feature vector is derived. The CEUS time-intensity curve is fitted with a double exponential, and dynamic perfusion parameters such as peak time and perfusion half-life are extracted for microcirculation evaluation and hemodynamic analysis. The experiment shows that in the 10 ovarian ROIs analyzed, the vascular density ranges from 5.43% to 8.45%; the average diameter is 5.88 to 6.52 pixels; the branch number consistency difference rate is less than 3%. The perfusion half-life is distributed between 21.8 and 25.1 seconds, and the peak time of the PCOS group is delayed by 0.5 seconds compared with the normal group, indicating that there are significant differences in their microvascular structure and perfusion function.</p>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\" \",\"pages\":\"100356\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.slast.2025.100356\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.slast.2025.100356","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Evaluation of Ovarian Microvascular Structure in PCOS Patients Based on High-resolution Ultrasound Imaging Technology.
Polycystic Ovary Syndrome (PCOS) patients often have ovarian microcirculatory disorders. Traditional color Doppler imaging of microvascular is not sensitive enough and is prone to missed detection or artifact interference. This study is based on a high-frequency probe combined with SMI (Superb Microvascular Imaging) and ultrasound contrast imaging to achieve high signal-to-noise ratio acquisition and dynamic quantification of low-speed blood flow in microvascular, filling the gap in existing technology. This study sets low-pass filtering and low PRF (Pulse Repetition Frequency) to enhance the detection of low-speed flow signals in microvascular. SMI and CEUS (Contrast-Enhanced Ultrasound) sequences are collected in sequence, and the time points are calibrated synchronously on the same section to achieve multimodal image fusion. The ovarian area is semi-automatically segmented based on the U-Net model, and the ROI (Region of Interest) containing the vascular structure is extracted. The vascular density, average diameter, and number of branches are calculated using self-developed image analysis software, and the feature vector is derived. The CEUS time-intensity curve is fitted with a double exponential, and dynamic perfusion parameters such as peak time and perfusion half-life are extracted for microcirculation evaluation and hemodynamic analysis. The experiment shows that in the 10 ovarian ROIs analyzed, the vascular density ranges from 5.43% to 8.45%; the average diameter is 5.88 to 6.52 pixels; the branch number consistency difference rate is less than 3%. The perfusion half-life is distributed between 21.8 and 25.1 seconds, and the peak time of the PCOS group is delayed by 0.5 seconds compared with the normal group, indicating that there are significant differences in their microvascular structure and perfusion function.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.