芽殖酵母中septin环大小控制的起源。

IF 8.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Igor V Kukhtevich, Sebastian Persson, Francesco Padovani, Robert Schneider, Marija Cvijovic, Kurt M Schmoller
{"title":"芽殖酵母中septin环大小控制的起源。","authors":"Igor V Kukhtevich, Sebastian Persson, Francesco Padovani, Robert Schneider, Marija Cvijovic, Kurt M Schmoller","doi":"10.1038/s44318-025-00571-5","DOIUrl":null,"url":null,"abstract":"<p><p>The size of organelles and cellular structures needs to be tightly regulated and coordinated with overall cell size. A well-studied example is the Cdc42-driven polarization and subsequent septin ring formation in Saccharomyces cerevisiae, where the size of the resulting structures scales with cell size. However, the mechanisms underlying this scaling remain unclear. Here, we combine live-cell imaging, genetic perturbations, and three-dimensional mathematical modeling to investigate how septin ring size is controlled. Our integrative approach reveals that positive feedback in the polarization pathway, together with an increase of the amount of polarity proteins as cell size grows, can explain the scaling of the Cdc42 cluster and, consequently, septin ring diameter. Additionally, we show that in cells lacking the formin Bni1, where F-actin-cable assembly and directed polarization are disrupted, exocytosis becomes diffuse, leading to abnormally large septin rings. By integrating new experimental findings and mathematical modeling of yeast polarization, our study provides insights into the origin of septin ring size control.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The origin of septin ring size control in budding yeast.\",\"authors\":\"Igor V Kukhtevich, Sebastian Persson, Francesco Padovani, Robert Schneider, Marija Cvijovic, Kurt M Schmoller\",\"doi\":\"10.1038/s44318-025-00571-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The size of organelles and cellular structures needs to be tightly regulated and coordinated with overall cell size. A well-studied example is the Cdc42-driven polarization and subsequent septin ring formation in Saccharomyces cerevisiae, where the size of the resulting structures scales with cell size. However, the mechanisms underlying this scaling remain unclear. Here, we combine live-cell imaging, genetic perturbations, and three-dimensional mathematical modeling to investigate how septin ring size is controlled. Our integrative approach reveals that positive feedback in the polarization pathway, together with an increase of the amount of polarity proteins as cell size grows, can explain the scaling of the Cdc42 cluster and, consequently, septin ring diameter. Additionally, we show that in cells lacking the formin Bni1, where F-actin-cable assembly and directed polarization are disrupted, exocytosis becomes diffuse, leading to abnormally large septin rings. By integrating new experimental findings and mathematical modeling of yeast polarization, our study provides insights into the origin of septin ring size control.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00571-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00571-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞器和细胞结构的大小需要与整体细胞大小紧密调节和协调。一个被充分研究的例子是在酿酒酵母中cdc42驱动的极化和随后的septin环形成,其中所产生的结构的大小与细胞大小成正比。然而,这种规模背后的机制仍不清楚。在这里,我们结合活细胞成像、遗传扰动和三维数学模型来研究septin环大小是如何控制的。我们的综合方法揭示了极化途径中的正反馈,以及随着细胞大小的增长而增加的极性蛋白的数量,可以解释Cdc42簇的缩放,从而解释隔素环直径的缩放。此外,我们发现在缺乏双胍蛋白Bni1的细胞中,f -肌动蛋白电缆组装和定向极化被破坏,胞吐变得弥漫性,导致异常大的隔素环。通过结合新的实验结果和酵母极化的数学模型,我们的研究为septin环大小控制的起源提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The origin of septin ring size control in budding yeast.

The size of organelles and cellular structures needs to be tightly regulated and coordinated with overall cell size. A well-studied example is the Cdc42-driven polarization and subsequent septin ring formation in Saccharomyces cerevisiae, where the size of the resulting structures scales with cell size. However, the mechanisms underlying this scaling remain unclear. Here, we combine live-cell imaging, genetic perturbations, and three-dimensional mathematical modeling to investigate how septin ring size is controlled. Our integrative approach reveals that positive feedback in the polarization pathway, together with an increase of the amount of polarity proteins as cell size grows, can explain the scaling of the Cdc42 cluster and, consequently, septin ring diameter. Additionally, we show that in cells lacking the formin Bni1, where F-actin-cable assembly and directed polarization are disrupted, exocytosis becomes diffuse, leading to abnormally large septin rings. By integrating new experimental findings and mathematical modeling of yeast polarization, our study provides insights into the origin of septin ring size control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信