{"title":"水稻转录因子HSTL通过调控赤霉素稳态调控株高和盐胁迫响应。","authors":"Chenyu Wang, Zhuowei Cheng, Mei Zhou, Zuming Lu, Qiong Jiang, Kaixing Lu, Cheng Zhu, Yanfei Ding","doi":"10.1186/s12284-025-00851-y","DOIUrl":null,"url":null,"abstract":"<p><p>Gibberellins (GAs) are crucial in the regulation of plant growth and development, and in responses to adverse environments. Here, we report that a Cys2 /His2 zinc finger protein in rice, HSTL (heat stress tolerance like), participates in the control of stem elongation and salt stress response by affecting GA homeostasis. Knockdown of HSTL increased plant height, internode elongation and bioactive GAs levels in rice plants. Comparative transcriptome showed that HSTL plays a critical role in rice GA pathway through regulation of genes involved in GA biosynthesis and metabolism. In addition, HSTL knockdown seedlings maintained higher relative water content and lower accumulation of H<sub>2</sub>O<sub>2</sub> as well as higher tolerance to salt stress compared with the wild-type (WT). These results suggest that HSTL plays an important role in regulating internode elongation and stress response by coordinating GAs homeostasis, thus providing a useful target for engineering stress-tolerant rice varieties.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"92"},"PeriodicalIF":5.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12494518/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rice Transcription Factor HSTL Regulates Plant Height and Salt Stress Response by Modulating Gibberellin Homeostasis.\",\"authors\":\"Chenyu Wang, Zhuowei Cheng, Mei Zhou, Zuming Lu, Qiong Jiang, Kaixing Lu, Cheng Zhu, Yanfei Ding\",\"doi\":\"10.1186/s12284-025-00851-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gibberellins (GAs) are crucial in the regulation of plant growth and development, and in responses to adverse environments. Here, we report that a Cys2 /His2 zinc finger protein in rice, HSTL (heat stress tolerance like), participates in the control of stem elongation and salt stress response by affecting GA homeostasis. Knockdown of HSTL increased plant height, internode elongation and bioactive GAs levels in rice plants. Comparative transcriptome showed that HSTL plays a critical role in rice GA pathway through regulation of genes involved in GA biosynthesis and metabolism. In addition, HSTL knockdown seedlings maintained higher relative water content and lower accumulation of H<sub>2</sub>O<sub>2</sub> as well as higher tolerance to salt stress compared with the wild-type (WT). These results suggest that HSTL plays an important role in regulating internode elongation and stress response by coordinating GAs homeostasis, thus providing a useful target for engineering stress-tolerant rice varieties.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"18 1\",\"pages\":\"92\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12494518/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-025-00851-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00851-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Rice Transcription Factor HSTL Regulates Plant Height and Salt Stress Response by Modulating Gibberellin Homeostasis.
Gibberellins (GAs) are crucial in the regulation of plant growth and development, and in responses to adverse environments. Here, we report that a Cys2 /His2 zinc finger protein in rice, HSTL (heat stress tolerance like), participates in the control of stem elongation and salt stress response by affecting GA homeostasis. Knockdown of HSTL increased plant height, internode elongation and bioactive GAs levels in rice plants. Comparative transcriptome showed that HSTL plays a critical role in rice GA pathway through regulation of genes involved in GA biosynthesis and metabolism. In addition, HSTL knockdown seedlings maintained higher relative water content and lower accumulation of H2O2 as well as higher tolerance to salt stress compared with the wild-type (WT). These results suggest that HSTL plays an important role in regulating internode elongation and stress response by coordinating GAs homeostasis, thus providing a useful target for engineering stress-tolerant rice varieties.
期刊介绍:
Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.