Silvia Capuzzi, Federico Baldisseri, Antonella Cacchione, Andrea Carai, Francesco Fabozzi, Antonio Pietrabissa, Angela Mastronuzzi, Alberto Eugenio Tozzi, Diana Ferro
{"title":"儿科肿瘤手术时间的人工智能多步模型。","authors":"Silvia Capuzzi, Federico Baldisseri, Antonella Cacchione, Andrea Carai, Francesco Fabozzi, Antonio Pietrabissa, Angela Mastronuzzi, Alberto Eugenio Tozzi, Diana Ferro","doi":"10.1701/4573.45791","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI's role in improving surgical planning, resource allocation, and clinical decision-making.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"593-594"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modello multi-step basato su intelligenza artificiale per il timing chirurgico in oncologia pediatrica.\",\"authors\":\"Silvia Capuzzi, Federico Baldisseri, Antonella Cacchione, Andrea Carai, Francesco Fabozzi, Antonio Pietrabissa, Angela Mastronuzzi, Alberto Eugenio Tozzi, Diana Ferro\",\"doi\":\"10.1701/4573.45791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI's role in improving surgical planning, resource allocation, and clinical decision-making.</p>\",\"PeriodicalId\":20887,\"journal\":{\"name\":\"Recenti progressi in medicina\",\"volume\":\"116 10\",\"pages\":\"593-594\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recenti progressi in medicina\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1701/4573.45791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recenti progressi in medicina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1701/4573.45791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Modello multi-step basato su intelligenza artificiale per il timing chirurgico in oncologia pediatrica.
This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI's role in improving surgical planning, resource allocation, and clinical decision-making.
期刊介绍:
Giunta ormai al sessantesimo anno, Recenti Progressi in Medicina continua a costituire un sicuro punto di riferimento ed uno strumento di lavoro fondamentale per l"ampliamento dell"orizzonte culturale del medico italiano. Recenti Progressi in Medicina è una rivista di medicina interna. Ciò significa il recupero di un"ottica globale e integrata, idonea ad evitare sia i particolarismi della informazione specialistica sia la frammentazione di quella generalista.