儿科肿瘤手术时间的人工智能多步模型。

Q3 Medicine
Silvia Capuzzi, Federico Baldisseri, Antonella Cacchione, Andrea Carai, Francesco Fabozzi, Antonio Pietrabissa, Angela Mastronuzzi, Alberto Eugenio Tozzi, Diana Ferro
{"title":"儿科肿瘤手术时间的人工智能多步模型。","authors":"Silvia Capuzzi, Federico Baldisseri, Antonella Cacchione, Andrea Carai, Francesco Fabozzi, Antonio Pietrabissa, Angela Mastronuzzi, Alberto Eugenio Tozzi, Diana Ferro","doi":"10.1701/4573.45791","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI's role in improving surgical planning, resource allocation, and clinical decision-making.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"593-594"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modello multi-step basato su intelligenza artificiale per il timing chirurgico in oncologia pediatrica.\",\"authors\":\"Silvia Capuzzi, Federico Baldisseri, Antonella Cacchione, Andrea Carai, Francesco Fabozzi, Antonio Pietrabissa, Angela Mastronuzzi, Alberto Eugenio Tozzi, Diana Ferro\",\"doi\":\"10.1701/4573.45791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI's role in improving surgical planning, resource allocation, and clinical decision-making.</p>\",\"PeriodicalId\":20887,\"journal\":{\"name\":\"Recenti progressi in medicina\",\"volume\":\"116 10\",\"pages\":\"593-594\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recenti progressi in medicina\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1701/4573.45791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recenti progressi in medicina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1701/4573.45791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于人工智能的两阶段模型来预测儿科肿瘤患者的手术等待时间。该模型使用来自1478名患者和6145例手术的真实数据,首先对手术紧迫性进行分类,然后估计紧急病例的等待时间。在这两个阶段,随机森林算法都是表现最好的算法,SHAP分析发现了类似的关键预测特征。结果支持人工智能在改善手术计划、资源分配和临床决策方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modello multi-step basato su intelligenza artificiale per il timing chirurgico in oncologia pediatrica.

This study presents a two-phase AI-based model to predict surgical wait times in paediatric oncology patients. Using real-world data from 1478 patients and 6145 surgeries, the model first classifies surgical urgency, then estimates wait times for urgent cases. Random Forest emerged as the best-performing algorithm in both phases, and SHAP analysis identified similar key predictive features. Results support AI's role in improving surgical planning, resource allocation, and clinical decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recenti progressi in medicina
Recenti progressi in medicina Medicine-Medicine (all)
CiteScore
0.90
自引率
0.00%
发文量
143
期刊介绍: Giunta ormai al sessantesimo anno, Recenti Progressi in Medicina continua a costituire un sicuro punto di riferimento ed uno strumento di lavoro fondamentale per l"ampliamento dell"orizzonte culturale del medico italiano. Recenti Progressi in Medicina è una rivista di medicina interna. Ciò significa il recupero di un"ottica globale e integrata, idonea ad evitare sia i particolarismi della informazione specialistica sia la frammentazione di quella generalista.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信