{"title":"通过数字表型来改善心理健康:将患者行为分组,以支持个性化决策。","authors":"Joy Bordini, Rita Cosoli","doi":"10.1701/4573.45778","DOIUrl":null,"url":null,"abstract":"<p><p>Breakthrough digital phenotyping approach reveals three distinct behavioral patterns from smartphone data that could revolutionize personalized mental health care. Using AI clustering on 77 users, we discovered \"Night Owls\", \"Routine-Oriented\", and \"Always-Connected\" behavioral types with 90%+ accuracy. Our explainable ML pipeline identifies key digital biomarkers for targeted interventions, offering clinicians data-driven insights for precision psychiatry.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"567-568"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Migliorare l’assistenza per la salute mentale con la fenotipizzazione digitale: raggruppamento dei comportamentit dei pazienti per il supporto decisionale personalizzato.\",\"authors\":\"Joy Bordini, Rita Cosoli\",\"doi\":\"10.1701/4573.45778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breakthrough digital phenotyping approach reveals three distinct behavioral patterns from smartphone data that could revolutionize personalized mental health care. Using AI clustering on 77 users, we discovered \\\"Night Owls\\\", \\\"Routine-Oriented\\\", and \\\"Always-Connected\\\" behavioral types with 90%+ accuracy. Our explainable ML pipeline identifies key digital biomarkers for targeted interventions, offering clinicians data-driven insights for precision psychiatry.</p>\",\"PeriodicalId\":20887,\"journal\":{\"name\":\"Recenti progressi in medicina\",\"volume\":\"116 10\",\"pages\":\"567-568\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recenti progressi in medicina\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1701/4573.45778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recenti progressi in medicina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1701/4573.45778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Migliorare l’assistenza per la salute mentale con la fenotipizzazione digitale: raggruppamento dei comportamentit dei pazienti per il supporto decisionale personalizzato.
Breakthrough digital phenotyping approach reveals three distinct behavioral patterns from smartphone data that could revolutionize personalized mental health care. Using AI clustering on 77 users, we discovered "Night Owls", "Routine-Oriented", and "Always-Connected" behavioral types with 90%+ accuracy. Our explainable ML pipeline identifies key digital biomarkers for targeted interventions, offering clinicians data-driven insights for precision psychiatry.
期刊介绍:
Giunta ormai al sessantesimo anno, Recenti Progressi in Medicina continua a costituire un sicuro punto di riferimento ed uno strumento di lavoro fondamentale per l"ampliamento dell"orizzonte culturale del medico italiano. Recenti Progressi in Medicina è una rivista di medicina interna. Ciò significa il recupero di un"ottica globale e integrata, idonea ad evitare sia i particolarismi della informazione specialistica sia la frammentazione di quella generalista.