{"title":"联合学习在神经病学中的应用:在中风、精神病、阿尔茨海默病和帕金森病中的应用。","authors":"Cosimo Guerra, Rosario De Feo","doi":"10.1701/4573.45790","DOIUrl":null,"url":null,"abstract":"<p><p>AI is transforming neurology, providing powerful diagnostic and therapeutic tools, yet handling sensitive clinical data involves substantial privacy risks. Federated Learning addresses these issues by training models locally within hospitals and sharing only their weights or gradients for final training, achieving similar or superior performance compared to centralized models in Stroke, Alzheimer's, and Parkinson's disease.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"591-592"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated Learning in neurologia: applicazioni nello stroke, malattia di Alzheimer e di Parkinson.\",\"authors\":\"Cosimo Guerra, Rosario De Feo\",\"doi\":\"10.1701/4573.45790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AI is transforming neurology, providing powerful diagnostic and therapeutic tools, yet handling sensitive clinical data involves substantial privacy risks. Federated Learning addresses these issues by training models locally within hospitals and sharing only their weights or gradients for final training, achieving similar or superior performance compared to centralized models in Stroke, Alzheimer's, and Parkinson's disease.</p>\",\"PeriodicalId\":20887,\"journal\":{\"name\":\"Recenti progressi in medicina\",\"volume\":\"116 10\",\"pages\":\"591-592\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recenti progressi in medicina\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1701/4573.45790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recenti progressi in medicina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1701/4573.45790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Federated Learning in neurologia: applicazioni nello stroke, malattia di Alzheimer e di Parkinson.
AI is transforming neurology, providing powerful diagnostic and therapeutic tools, yet handling sensitive clinical data involves substantial privacy risks. Federated Learning addresses these issues by training models locally within hospitals and sharing only their weights or gradients for final training, achieving similar or superior performance compared to centralized models in Stroke, Alzheimer's, and Parkinson's disease.
期刊介绍:
Giunta ormai al sessantesimo anno, Recenti Progressi in Medicina continua a costituire un sicuro punto di riferimento ed uno strumento di lavoro fondamentale per l"ampliamento dell"orizzonte culturale del medico italiano. Recenti Progressi in Medicina è una rivista di medicina interna. Ciò significa il recupero di un"ottica globale e integrata, idonea ad evitare sia i particolarismi della informazione specialistica sia la frammentazione di quella generalista.