Alyssa Thomas DeCruz, Benjamin S Miller, Da Huang, Max McRobbie, Felix Donaldson, Laura E McCoy, Ciara K O'Sullivan, Johannes C Botha, Eleni Nastouli, Rachel A McKendry
{"title":"量子增强纳米金刚石快速检测技术推动临床诊断早期检测新冠病毒抗原","authors":"Alyssa Thomas DeCruz, Benjamin S Miller, Da Huang, Max McRobbie, Felix Donaldson, Laura E McCoy, Ciara K O'Sullivan, Johannes C Botha, Eleni Nastouli, Rachel A McKendry","doi":"10.1038/s41467-025-63066-1","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum biosensors, which harness quantum effects to detect biomarkers, could address the urgent need for more sensitive rapid diagnostics. Lateral flow tests using nitrogen-vacancy centres in nanodiamond labels offer high sensitivity and robustness by controlling the spin-dependent fluorescence to remove background. This is particularly important in complex and variable clinical samples. However, to date only model systems have been studied with few clinical samples. Here we show results of a clinical evaluation of a spin-enhanced nanodiamond test for SARS-CoV-2 antigen with 103 upper respiratory tract swab samples. We find 95.1% sensitivity (Ct ≤ 30) and 100% specificity benchmarked against RT-qPCR, with no cross-reactivity to influenza A, RSV, and Rhinovirus. Modelling with patient data yields a mean of 2.0-days earlier detection compared to conventional gold-nanoparticle tests (just 0.6 days after RT-qPCR) with 2.2-fold more patients detected on the first day of symptom onset, potentially reducing the transmission risk and protecting populations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8778"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-enhanced nanodiamond rapid test advances early SARS-CoV-2 antigen detection in clinical diagnostics.\",\"authors\":\"Alyssa Thomas DeCruz, Benjamin S Miller, Da Huang, Max McRobbie, Felix Donaldson, Laura E McCoy, Ciara K O'Sullivan, Johannes C Botha, Eleni Nastouli, Rachel A McKendry\",\"doi\":\"10.1038/s41467-025-63066-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum biosensors, which harness quantum effects to detect biomarkers, could address the urgent need for more sensitive rapid diagnostics. Lateral flow tests using nitrogen-vacancy centres in nanodiamond labels offer high sensitivity and robustness by controlling the spin-dependent fluorescence to remove background. This is particularly important in complex and variable clinical samples. However, to date only model systems have been studied with few clinical samples. Here we show results of a clinical evaluation of a spin-enhanced nanodiamond test for SARS-CoV-2 antigen with 103 upper respiratory tract swab samples. We find 95.1% sensitivity (Ct ≤ 30) and 100% specificity benchmarked against RT-qPCR, with no cross-reactivity to influenza A, RSV, and Rhinovirus. Modelling with patient data yields a mean of 2.0-days earlier detection compared to conventional gold-nanoparticle tests (just 0.6 days after RT-qPCR) with 2.2-fold more patients detected on the first day of symptom onset, potentially reducing the transmission risk and protecting populations.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8778\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63066-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63066-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quantum-enhanced nanodiamond rapid test advances early SARS-CoV-2 antigen detection in clinical diagnostics.
Quantum biosensors, which harness quantum effects to detect biomarkers, could address the urgent need for more sensitive rapid diagnostics. Lateral flow tests using nitrogen-vacancy centres in nanodiamond labels offer high sensitivity and robustness by controlling the spin-dependent fluorescence to remove background. This is particularly important in complex and variable clinical samples. However, to date only model systems have been studied with few clinical samples. Here we show results of a clinical evaluation of a spin-enhanced nanodiamond test for SARS-CoV-2 antigen with 103 upper respiratory tract swab samples. We find 95.1% sensitivity (Ct ≤ 30) and 100% specificity benchmarked against RT-qPCR, with no cross-reactivity to influenza A, RSV, and Rhinovirus. Modelling with patient data yields a mean of 2.0-days earlier detection compared to conventional gold-nanoparticle tests (just 0.6 days after RT-qPCR) with 2.2-fold more patients detected on the first day of symptom onset, potentially reducing the transmission risk and protecting populations.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.