{"title":"光电传感器内计算装置的制造与表征。","authors":"Guang Zeng, Sijie Ma, Tianqing Wan, Hongye Chen, Jiewei Chen, Yang Chai","doi":"10.1038/s41596-025-01262-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinspired in-sensor computing devices can process information at sensory terminals by leveraging physical principles, thereby reducing latency and energy consumption during computation while simultaneously enhancing the efficiency of data processing and real-time analysis. Optoelectronic devices exhibit in-sensor computing functions, such as feature enhancement and data compression, by tuning the defect states of the semiconductor channels and thereby modulating the photoresponsivity and time constants of the sensors. These functionalities are critically dependent on precise fabrication and testing protocols. Here we present a detailed procedure for fabricating and characterizing in-sensor computing devices based on nanoscale semiconductor thin films. We explain how to test such optoelectronic devices, including the testing of visual adaptation and motion perception responses. When using semiconductor materials obtained from commercial suppliers, this procedure is time efficient and results in highly reproducible device performance. Nevertheless, all device fabrication and testing steps are generalizable and can be extended to other semiconductor thin films grown using different methods. The procedure is intended for researchers experienced in cleanroom operations and microfabrication techniques and can be completed in ~14 d. The use of bioinspired optoelectronic devices enables the development of a framework for advancing in-sensor computing technologies.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and characterization of optoelectronic in-sensor computing devices.\",\"authors\":\"Guang Zeng, Sijie Ma, Tianqing Wan, Hongye Chen, Jiewei Chen, Yang Chai\",\"doi\":\"10.1038/s41596-025-01262-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioinspired in-sensor computing devices can process information at sensory terminals by leveraging physical principles, thereby reducing latency and energy consumption during computation while simultaneously enhancing the efficiency of data processing and real-time analysis. Optoelectronic devices exhibit in-sensor computing functions, such as feature enhancement and data compression, by tuning the defect states of the semiconductor channels and thereby modulating the photoresponsivity and time constants of the sensors. These functionalities are critically dependent on precise fabrication and testing protocols. Here we present a detailed procedure for fabricating and characterizing in-sensor computing devices based on nanoscale semiconductor thin films. We explain how to test such optoelectronic devices, including the testing of visual adaptation and motion perception responses. When using semiconductor materials obtained from commercial suppliers, this procedure is time efficient and results in highly reproducible device performance. Nevertheless, all device fabrication and testing steps are generalizable and can be extended to other semiconductor thin films grown using different methods. The procedure is intended for researchers experienced in cleanroom operations and microfabrication techniques and can be completed in ~14 d. The use of bioinspired optoelectronic devices enables the development of a framework for advancing in-sensor computing technologies.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01262-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01262-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fabrication and characterization of optoelectronic in-sensor computing devices.
Bioinspired in-sensor computing devices can process information at sensory terminals by leveraging physical principles, thereby reducing latency and energy consumption during computation while simultaneously enhancing the efficiency of data processing and real-time analysis. Optoelectronic devices exhibit in-sensor computing functions, such as feature enhancement and data compression, by tuning the defect states of the semiconductor channels and thereby modulating the photoresponsivity and time constants of the sensors. These functionalities are critically dependent on precise fabrication and testing protocols. Here we present a detailed procedure for fabricating and characterizing in-sensor computing devices based on nanoscale semiconductor thin films. We explain how to test such optoelectronic devices, including the testing of visual adaptation and motion perception responses. When using semiconductor materials obtained from commercial suppliers, this procedure is time efficient and results in highly reproducible device performance. Nevertheless, all device fabrication and testing steps are generalizable and can be extended to other semiconductor thin films grown using different methods. The procedure is intended for researchers experienced in cleanroom operations and microfabrication techniques and can be completed in ~14 d. The use of bioinspired optoelectronic devices enables the development of a framework for advancing in-sensor computing technologies.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.