加速单分子数据发现的机器学习。

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
{"title":"加速单分子数据发现的机器学习。","authors":"","doi":"10.1038/s41592-025-02840-x","DOIUrl":null,"url":null,"abstract":"Manual analysis of single-molecule time traces is slow and subjective. Now, a transformer-based foundation model — META-SiM —automates key analysis tasks across diverse datasets and enables rapid, systematic discovery of subtle single-molecule behaviors. Application of this approach reveals a previously undetected pre-mRNA splicing intermediate, highlighting its potential to streamline biological discovery.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 10","pages":"2022-2023"},"PeriodicalIF":32.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for accelerating discovery from single-molecule data\",\"authors\":\"\",\"doi\":\"10.1038/s41592-025-02840-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual analysis of single-molecule time traces is slow and subjective. Now, a transformer-based foundation model — META-SiM —automates key analysis tasks across diverse datasets and enables rapid, systematic discovery of subtle single-molecule behaviors. Application of this approach reveals a previously undetected pre-mRNA splicing intermediate, highlighting its potential to streamline biological discovery.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 10\",\"pages\":\"2022-2023\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-025-02840-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02840-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

手工分析单分子时间轨迹是缓慢和主观的。现在,基于变压器的基础模型META-SiM可以自动完成跨不同数据集的关键分析任务,并能够快速、系统地发现细微的单分子行为。这种方法的应用揭示了一种以前未被发现的pre-mRNA剪接中间体,突出了其简化生物学发现的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning for accelerating discovery from single-molecule data

Machine learning for accelerating discovery from single-molecule data
Manual analysis of single-molecule time traces is slow and subjective. Now, a transformer-based foundation model — META-SiM —automates key analysis tasks across diverse datasets and enables rapid, systematic discovery of subtle single-molecule behaviors. Application of this approach reveals a previously undetected pre-mRNA splicing intermediate, highlighting its potential to streamline biological discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信