对scRNA-seq拷贝数变化调用程序进行基准测试。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Katharina T Schmid, Aikaterini Symeonidi, Dmytro Hlushchenko, Maria L Richter, Andréa E Tijhuis, Floris Foijer, Maria Colomé-Tatché
{"title":"对scRNA-seq拷贝数变化调用程序进行基准测试。","authors":"Katharina T Schmid, Aikaterini Symeonidi, Dmytro Hlushchenko, Maria L Richter, Andréa E Tijhuis, Floris Foijer, Maria Colomé-Tatché","doi":"10.1038/s41467-025-62359-9","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variations (CNVs), the gain or loss of genomic regions, are associated with disease, especially cancer. Single cell technologies offer new possibilities to capture within-sample heterogeneity of CNVs and identify subclones relevant for tumor progression and treatment outcome. Several computational tools have been developed to identify CNVs from scRNA-seq data. However, an independent benchmarking of them is lacking. Here, we evaluate six popular methods in their ability to correctly identify ground truth CNVs, euploid cells and subclonal structures in 21 scRNA-seq datasets. We discover dataset-specific factors influencing the performance, including dataset size, the number and type of CNVs in the sample and the choice of the reference dataset. Methods which include allelic information perform more robustly for large droplet-based datasets, but require higher runtime. Furthermore, the methods differ in their additional functionalities. We offer a benchmarking pipeline to identify the optimal method for new datasets, and improve methods' performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8777"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking scRNA-seq copy number variation callers.\",\"authors\":\"Katharina T Schmid, Aikaterini Symeonidi, Dmytro Hlushchenko, Maria L Richter, Andréa E Tijhuis, Floris Foijer, Maria Colomé-Tatché\",\"doi\":\"10.1038/s41467-025-62359-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copy number variations (CNVs), the gain or loss of genomic regions, are associated with disease, especially cancer. Single cell technologies offer new possibilities to capture within-sample heterogeneity of CNVs and identify subclones relevant for tumor progression and treatment outcome. Several computational tools have been developed to identify CNVs from scRNA-seq data. However, an independent benchmarking of them is lacking. Here, we evaluate six popular methods in their ability to correctly identify ground truth CNVs, euploid cells and subclonal structures in 21 scRNA-seq datasets. We discover dataset-specific factors influencing the performance, including dataset size, the number and type of CNVs in the sample and the choice of the reference dataset. Methods which include allelic information perform more robustly for large droplet-based datasets, but require higher runtime. Furthermore, the methods differ in their additional functionalities. We offer a benchmarking pipeline to identify the optimal method for new datasets, and improve methods' performance.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8777\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62359-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62359-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

拷贝数变异(CNVs),即基因组区域的增加或减少,与疾病,特别是癌症有关。单细胞技术为捕获样本内CNVs的异质性和识别与肿瘤进展和治疗结果相关的亚克隆提供了新的可能性。已经开发了几种计算工具来从scRNA-seq数据中识别CNVs。然而,缺乏对它们进行独立的基准测试。在这里,我们评估了六种流行的方法在21个scRNA-seq数据集中正确识别真实CNVs、整倍体细胞和亚克隆结构的能力。我们发现了影响性能的数据集特定因素,包括数据集大小、样本中cnv的数量和类型以及参考数据集的选择。包含等位基因信息的方法在基于液滴的大数据集上表现更健壮,但需要更长的运行时间。此外,这些方法在附加功能上有所不同。我们提供了一个基准测试管道,以确定新数据集的最佳方法,并提高方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking scRNA-seq copy number variation callers.

Copy number variations (CNVs), the gain or loss of genomic regions, are associated with disease, especially cancer. Single cell technologies offer new possibilities to capture within-sample heterogeneity of CNVs and identify subclones relevant for tumor progression and treatment outcome. Several computational tools have been developed to identify CNVs from scRNA-seq data. However, an independent benchmarking of them is lacking. Here, we evaluate six popular methods in their ability to correctly identify ground truth CNVs, euploid cells and subclonal structures in 21 scRNA-seq datasets. We discover dataset-specific factors influencing the performance, including dataset size, the number and type of CNVs in the sample and the choice of the reference dataset. Methods which include allelic information perform more robustly for large droplet-based datasets, but require higher runtime. Furthermore, the methods differ in their additional functionalities. We offer a benchmarking pipeline to identify the optimal method for new datasets, and improve methods' performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信