{"title":"微塑料和纳米塑料分析:从热解气相色谱-质谱法到热解二维气相色谱-质谱法-评述。","authors":"Géraldine Dumont, Anaïs Rodrigues, Milica Velimirovic, Siebe Lievens, Jan Jordens, Jean-François Focant, Pierre-Hugues Stefanuto","doi":"10.1002/jssc.70287","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The growing environmental and health concerns regarding micro- and nanoplastics (MNPs) have prompted the development of advanced analytical methods for accurate characterization and quantification. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) enables polymer identification by their thermal destruction into characteristic fragments. However, the small particle size and interferences originating from complex sample matrices complicate its analysis. Therefore, the integration of comprehensive two-dimensional GC (GC×GC) would improve separation efficiency and sensitivity and provide a detailed composition of environmental and biological samples. This review documents (i) the evolution of Py-GC-MS and (ii) the potential to resolve overlapping compounds, improving quantification accuracy, and detecting minor plastic compounds and degradation byproducts by comprehensive GC×GC-MS as a crucial approach to measure MNPs. Despite the documented advancements, key challenges persist. The lack of standardized protocols for sample preparation and calibration, impeding the comparability of studies, is of prime concern. The massive presence of (in)organic interferences even further accentuates the absence of internal standards in terms of quantification. Therefore, to improve analytical reliability, future research should focus on developing standardized methodologies, improving detection sensitivity for NPs, and incorporating complementary approaches. Additionally, coupling GC×GC with time-of-flight MS further strengthens its capability to provide higher analytical resolution power and better chemical description of pyrolyzates. This review highlights the crucial role of advanced Py and chromatography-based techniques in supporting the analytical description of the extent of plastic pollution and in supporting evidence-based policymaking and successful mitigation efforts to protect ecosystems and public health.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"48 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastic and Nanoplastic Analysis: From Pyrolysis Gas Chromatography-Mass Spectrometry to Pyrolysis Two-dimensional Gas Chromatography-Mass Spectrometry—A Critical Review\",\"authors\":\"Géraldine Dumont, Anaïs Rodrigues, Milica Velimirovic, Siebe Lievens, Jan Jordens, Jean-François Focant, Pierre-Hugues Stefanuto\",\"doi\":\"10.1002/jssc.70287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The growing environmental and health concerns regarding micro- and nanoplastics (MNPs) have prompted the development of advanced analytical methods for accurate characterization and quantification. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) enables polymer identification by their thermal destruction into characteristic fragments. However, the small particle size and interferences originating from complex sample matrices complicate its analysis. Therefore, the integration of comprehensive two-dimensional GC (GC×GC) would improve separation efficiency and sensitivity and provide a detailed composition of environmental and biological samples. This review documents (i) the evolution of Py-GC-MS and (ii) the potential to resolve overlapping compounds, improving quantification accuracy, and detecting minor plastic compounds and degradation byproducts by comprehensive GC×GC-MS as a crucial approach to measure MNPs. Despite the documented advancements, key challenges persist. The lack of standardized protocols for sample preparation and calibration, impeding the comparability of studies, is of prime concern. The massive presence of (in)organic interferences even further accentuates the absence of internal standards in terms of quantification. Therefore, to improve analytical reliability, future research should focus on developing standardized methodologies, improving detection sensitivity for NPs, and incorporating complementary approaches. Additionally, coupling GC×GC with time-of-flight MS further strengthens its capability to provide higher analytical resolution power and better chemical description of pyrolyzates. This review highlights the crucial role of advanced Py and chromatography-based techniques in supporting the analytical description of the extent of plastic pollution and in supporting evidence-based policymaking and successful mitigation efforts to protect ecosystems and public health.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"48 10\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jssc.70287\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jssc.70287","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Microplastic and Nanoplastic Analysis: From Pyrolysis Gas Chromatography-Mass Spectrometry to Pyrolysis Two-dimensional Gas Chromatography-Mass Spectrometry—A Critical Review
The growing environmental and health concerns regarding micro- and nanoplastics (MNPs) have prompted the development of advanced analytical methods for accurate characterization and quantification. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) enables polymer identification by their thermal destruction into characteristic fragments. However, the small particle size and interferences originating from complex sample matrices complicate its analysis. Therefore, the integration of comprehensive two-dimensional GC (GC×GC) would improve separation efficiency and sensitivity and provide a detailed composition of environmental and biological samples. This review documents (i) the evolution of Py-GC-MS and (ii) the potential to resolve overlapping compounds, improving quantification accuracy, and detecting minor plastic compounds and degradation byproducts by comprehensive GC×GC-MS as a crucial approach to measure MNPs. Despite the documented advancements, key challenges persist. The lack of standardized protocols for sample preparation and calibration, impeding the comparability of studies, is of prime concern. The massive presence of (in)organic interferences even further accentuates the absence of internal standards in terms of quantification. Therefore, to improve analytical reliability, future research should focus on developing standardized methodologies, improving detection sensitivity for NPs, and incorporating complementary approaches. Additionally, coupling GC×GC with time-of-flight MS further strengthens its capability to provide higher analytical resolution power and better chemical description of pyrolyzates. This review highlights the crucial role of advanced Py and chromatography-based techniques in supporting the analytical description of the extent of plastic pollution and in supporting evidence-based policymaking and successful mitigation efforts to protect ecosystems and public health.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.