Tuoye Xu, Joao A. Paulo, Piyan Zhang, Xinyue Liu, Alya Nguyen, Yuanhua Cheng, Clark Massick, Yanhong Zhang, Dennis K. Jeppesen, Qin Zhang, James N. Higginbotham, Oleg S. Tutanov, Anna M. Krichevsky, Daniel T. Chiu, Steve P. Gygi, Kasey C. Vickers, Jeffrey L. Franklin, Robert J. Coffey, Al Charest
{"title":"胶质母细胞瘤细胞外囊泡和非囊泡纳米颗粒的异质性。","authors":"Tuoye Xu, Joao A. Paulo, Piyan Zhang, Xinyue Liu, Alya Nguyen, Yuanhua Cheng, Clark Massick, Yanhong Zhang, Dennis K. Jeppesen, Qin Zhang, James N. Higginbotham, Oleg S. Tutanov, Anna M. Krichevsky, Daniel T. Chiu, Steve P. Gygi, Kasey C. Vickers, Jeffrey L. Franklin, Robert J. Coffey, Al Charest","doi":"10.1002/jev2.70168","DOIUrl":null,"url":null,"abstract":"<p>It is increasingly clear that intercellular communication is largely mediated by lipid-bilayer, membrane-bound extracellular vesicles (EVs) and amembranous, non-vesicular extracellular particles (NVEPs), including exomeres and the recently identified supermeres. To elucidate the cargo and functional roles of these carriers, we performed a comprehensive analysis of their lipid, protein and RNA content in the context of colorectal cancer and glioblastoma (GBM). Our results demonstrate that EVs exhibit distinct density profiles correlated with specific biomolecular signatures. Moreover, EVs and NVEPs display notable differences in their protein and RNA composition, which confer distinct functional attributes. Supermeres are notably enriched in components involved in extracellular matrix remodeling and possess the ability to cross the blood–brain barrier, a process dependent on their intact structure and RNA content. Once in the central nervous system (CNS), they preferentially engage with microglia and suppress TGFβ1 expression, suggesting a role in modulating microglial immune activity. Furthermore, systemically administered exogenous supermeres selectively accumulate in GBM tumors in vivo. Together, these findings highlight supermeres as a promising vehicle for delivering therapeutics to the CNS and brain tumors.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 10","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70168","citationCount":"0","resultStr":"{\"title\":\"Heterogeneity of Extracellular Vesicles and Non-Vesicular Nanoparticles in Glioblastoma\",\"authors\":\"Tuoye Xu, Joao A. Paulo, Piyan Zhang, Xinyue Liu, Alya Nguyen, Yuanhua Cheng, Clark Massick, Yanhong Zhang, Dennis K. Jeppesen, Qin Zhang, James N. Higginbotham, Oleg S. Tutanov, Anna M. Krichevsky, Daniel T. Chiu, Steve P. Gygi, Kasey C. Vickers, Jeffrey L. Franklin, Robert J. Coffey, Al Charest\",\"doi\":\"10.1002/jev2.70168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is increasingly clear that intercellular communication is largely mediated by lipid-bilayer, membrane-bound extracellular vesicles (EVs) and amembranous, non-vesicular extracellular particles (NVEPs), including exomeres and the recently identified supermeres. To elucidate the cargo and functional roles of these carriers, we performed a comprehensive analysis of their lipid, protein and RNA content in the context of colorectal cancer and glioblastoma (GBM). Our results demonstrate that EVs exhibit distinct density profiles correlated with specific biomolecular signatures. Moreover, EVs and NVEPs display notable differences in their protein and RNA composition, which confer distinct functional attributes. Supermeres are notably enriched in components involved in extracellular matrix remodeling and possess the ability to cross the blood–brain barrier, a process dependent on their intact structure and RNA content. Once in the central nervous system (CNS), they preferentially engage with microglia and suppress TGFβ1 expression, suggesting a role in modulating microglial immune activity. Furthermore, systemically administered exogenous supermeres selectively accumulate in GBM tumors in vivo. Together, these findings highlight supermeres as a promising vehicle for delivering therapeutics to the CNS and brain tumors.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70168\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70168\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70168","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Heterogeneity of Extracellular Vesicles and Non-Vesicular Nanoparticles in Glioblastoma
It is increasingly clear that intercellular communication is largely mediated by lipid-bilayer, membrane-bound extracellular vesicles (EVs) and amembranous, non-vesicular extracellular particles (NVEPs), including exomeres and the recently identified supermeres. To elucidate the cargo and functional roles of these carriers, we performed a comprehensive analysis of their lipid, protein and RNA content in the context of colorectal cancer and glioblastoma (GBM). Our results demonstrate that EVs exhibit distinct density profiles correlated with specific biomolecular signatures. Moreover, EVs and NVEPs display notable differences in their protein and RNA composition, which confer distinct functional attributes. Supermeres are notably enriched in components involved in extracellular matrix remodeling and possess the ability to cross the blood–brain barrier, a process dependent on their intact structure and RNA content. Once in the central nervous system (CNS), they preferentially engage with microglia and suppress TGFβ1 expression, suggesting a role in modulating microglial immune activity. Furthermore, systemically administered exogenous supermeres selectively accumulate in GBM tumors in vivo. Together, these findings highlight supermeres as a promising vehicle for delivering therapeutics to the CNS and brain tumors.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.