Yong Peng , Linlin Shang , Gan Chen , Simeng Zhao , Mengyun Mao , Danxi Zhu , Di Qin
{"title":"运动减轻β -肾上腺素能过度激活引起的心脏损伤的动物模型和机制。","authors":"Yong Peng , Linlin Shang , Gan Chen , Simeng Zhao , Mengyun Mao , Danxi Zhu , Di Qin","doi":"10.1016/j.yjmcc.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Acute sympathetic stress, which causes hyperactivation of β-adrenergic receptors (β-AR) in the heart, is a key pathological factor in the development of cardiac disease. Isoproterenol (ISO) is a non-selective β-AR agonist, which was utilized to develop an experimental animal model of pathological cardiac remodeling, simulating the acute sympathetic stress-induced cardiac injury. Current research evidences support the potential role of exercise in preventing or treating heart injury caused by β-adrenergic overactivation. The mechanisms of exercise against ISO-induced cardiac injury include of inhibiting cardiac inflammation and oxidative stress, suppressing apoptosis, pyroptosis, and necroptosis in cardiomyocytes, activating Adenosine 5′ -monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, reducing reactive oxygen species (ROS) to regulate the inflammatory response. Despite the protective effects of exercise in attenuating ISO-induced cardiac injury, further studies are necessary to explore the optimal combination of exercise intensity and duration. Additionally, comparative research is required to evaluate the protective effects of different exercise types, investigate the relationship between exercise-induced protection and ISO dosage, and reveal new mechanism underlying the protective effects of exercise against ISO-induced heart injury. This study will improve our understanding of the mechanisms by which exercise protects against cardiac injury induced by β-adrenergic overload, and establish a stronger foundation for studying the effects of exercise against β-adrenergic overload-induced cardiac injury.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"209 ","pages":"Pages 15-26"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Animal models and mechanisms of exercise in attenuating cardiac injury induced by beta-adrenergic hyperactivation\",\"authors\":\"Yong Peng , Linlin Shang , Gan Chen , Simeng Zhao , Mengyun Mao , Danxi Zhu , Di Qin\",\"doi\":\"10.1016/j.yjmcc.2025.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acute sympathetic stress, which causes hyperactivation of β-adrenergic receptors (β-AR) in the heart, is a key pathological factor in the development of cardiac disease. Isoproterenol (ISO) is a non-selective β-AR agonist, which was utilized to develop an experimental animal model of pathological cardiac remodeling, simulating the acute sympathetic stress-induced cardiac injury. Current research evidences support the potential role of exercise in preventing or treating heart injury caused by β-adrenergic overactivation. The mechanisms of exercise against ISO-induced cardiac injury include of inhibiting cardiac inflammation and oxidative stress, suppressing apoptosis, pyroptosis, and necroptosis in cardiomyocytes, activating Adenosine 5′ -monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, reducing reactive oxygen species (ROS) to regulate the inflammatory response. Despite the protective effects of exercise in attenuating ISO-induced cardiac injury, further studies are necessary to explore the optimal combination of exercise intensity and duration. Additionally, comparative research is required to evaluate the protective effects of different exercise types, investigate the relationship between exercise-induced protection and ISO dosage, and reveal new mechanism underlying the protective effects of exercise against ISO-induced heart injury. This study will improve our understanding of the mechanisms by which exercise protects against cardiac injury induced by β-adrenergic overload, and establish a stronger foundation for studying the effects of exercise against β-adrenergic overload-induced cardiac injury.</div></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"209 \",\"pages\":\"Pages 15-26\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282825001762\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825001762","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Animal models and mechanisms of exercise in attenuating cardiac injury induced by beta-adrenergic hyperactivation
Acute sympathetic stress, which causes hyperactivation of β-adrenergic receptors (β-AR) in the heart, is a key pathological factor in the development of cardiac disease. Isoproterenol (ISO) is a non-selective β-AR agonist, which was utilized to develop an experimental animal model of pathological cardiac remodeling, simulating the acute sympathetic stress-induced cardiac injury. Current research evidences support the potential role of exercise in preventing or treating heart injury caused by β-adrenergic overactivation. The mechanisms of exercise against ISO-induced cardiac injury include of inhibiting cardiac inflammation and oxidative stress, suppressing apoptosis, pyroptosis, and necroptosis in cardiomyocytes, activating Adenosine 5′ -monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, reducing reactive oxygen species (ROS) to regulate the inflammatory response. Despite the protective effects of exercise in attenuating ISO-induced cardiac injury, further studies are necessary to explore the optimal combination of exercise intensity and duration. Additionally, comparative research is required to evaluate the protective effects of different exercise types, investigate the relationship between exercise-induced protection and ISO dosage, and reveal new mechanism underlying the protective effects of exercise against ISO-induced heart injury. This study will improve our understanding of the mechanisms by which exercise protects against cardiac injury induced by β-adrenergic overload, and establish a stronger foundation for studying the effects of exercise against β-adrenergic overload-induced cardiac injury.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.