Joseph Adams, Tingting Li, Peilin Zhu, Chloe Garbe, Fei Tu, Jared Casteel, Valentin Yakubenko, David L Williams, Chuanfu Li, Xiaohui Wang
{"title":"β-葡聚糖通过抑制焦亡和促进自我更新来保护败血症诱导的库普弗细胞损失。","authors":"Joseph Adams, Tingting Li, Peilin Zhu, Chloe Garbe, Fei Tu, Jared Casteel, Valentin Yakubenko, David L Williams, Chuanfu Li, Xiaohui Wang","doi":"10.1111/imm.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a life-threatening condition characterised by a dysregulated host response to infection, resulting in systemic inflammation, immune dysfunction, and multi-organ failure. Kupffer cells (KCs), the largest population of tissue-resident macrophages in the body, are essential for pathogen clearance, endotoxin detoxification, and maintaining hepatic immune homeostasis during sepsis. However, sepsis induces substantial KC depletion, contributing to increased bacterial burden and mortality. In this study, we demonstrate that β-glucan treatment effectively protects against sepsis-induced KC loss and reduces circulating bacterial load. Mechanistically, β-glucan attenuates KC death by suppressing NLRP3 and gasdermin D (GSDMD)-mediated pyroptosis triggered by bacterial infections. Notably, we identify a previously unrecognised function of β-glucan in markedly enhancing KC self-renewal during sepsis through downregulation of the transcriptional repressors c-Maf and MafB, which are known to inhibit macrophage proliferation. This discovery reveals a novel mechanism of hepatic macrophage regeneration and supports β-glucan as a promising immunomodulatory therapy to preserve liver immune integrity, enhancing antibacterial defence, and reducing the risk of secondary infections in immunocompromised septic hosts.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Glucan Protects Against Sepsis-Induced Kupffer Cell Loss by Inhibiting Pyroptosis and Promoting Self-Renewal.\",\"authors\":\"Joseph Adams, Tingting Li, Peilin Zhu, Chloe Garbe, Fei Tu, Jared Casteel, Valentin Yakubenko, David L Williams, Chuanfu Li, Xiaohui Wang\",\"doi\":\"10.1111/imm.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis is a life-threatening condition characterised by a dysregulated host response to infection, resulting in systemic inflammation, immune dysfunction, and multi-organ failure. Kupffer cells (KCs), the largest population of tissue-resident macrophages in the body, are essential for pathogen clearance, endotoxin detoxification, and maintaining hepatic immune homeostasis during sepsis. However, sepsis induces substantial KC depletion, contributing to increased bacterial burden and mortality. In this study, we demonstrate that β-glucan treatment effectively protects against sepsis-induced KC loss and reduces circulating bacterial load. Mechanistically, β-glucan attenuates KC death by suppressing NLRP3 and gasdermin D (GSDMD)-mediated pyroptosis triggered by bacterial infections. Notably, we identify a previously unrecognised function of β-glucan in markedly enhancing KC self-renewal during sepsis through downregulation of the transcriptional repressors c-Maf and MafB, which are known to inhibit macrophage proliferation. This discovery reveals a novel mechanism of hepatic macrophage regeneration and supports β-glucan as a promising immunomodulatory therapy to preserve liver immune integrity, enhancing antibacterial defence, and reducing the risk of secondary infections in immunocompromised septic hosts.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/imm.70043\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.70043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
β-Glucan Protects Against Sepsis-Induced Kupffer Cell Loss by Inhibiting Pyroptosis and Promoting Self-Renewal.
Sepsis is a life-threatening condition characterised by a dysregulated host response to infection, resulting in systemic inflammation, immune dysfunction, and multi-organ failure. Kupffer cells (KCs), the largest population of tissue-resident macrophages in the body, are essential for pathogen clearance, endotoxin detoxification, and maintaining hepatic immune homeostasis during sepsis. However, sepsis induces substantial KC depletion, contributing to increased bacterial burden and mortality. In this study, we demonstrate that β-glucan treatment effectively protects against sepsis-induced KC loss and reduces circulating bacterial load. Mechanistically, β-glucan attenuates KC death by suppressing NLRP3 and gasdermin D (GSDMD)-mediated pyroptosis triggered by bacterial infections. Notably, we identify a previously unrecognised function of β-glucan in markedly enhancing KC self-renewal during sepsis through downregulation of the transcriptional repressors c-Maf and MafB, which are known to inhibit macrophage proliferation. This discovery reveals a novel mechanism of hepatic macrophage regeneration and supports β-glucan as a promising immunomodulatory therapy to preserve liver immune integrity, enhancing antibacterial defence, and reducing the risk of secondary infections in immunocompromised septic hosts.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.