Mei Wang, Ruihua Yan, Wenbo Xia, Yongcai Gao, Yonghua Liu, Li Bao, Hongyan Luo, Jing E, Hui Wang, Bo Li, Yali Zheng
{"title":"1990年至2021年由于低体力活动导致的2型糖尿病相关糖尿病肾病的全球、区域和国家负担:对2021年全球疾病负担研究的系统分析,并预测到2050年。","authors":"Mei Wang, Ruihua Yan, Wenbo Xia, Yongcai Gao, Yonghua Liu, Li Bao, Hongyan Luo, Jing E, Hui Wang, Bo Li, Yali Zheng","doi":"10.3389/fendo.2025.1625973","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low physical activity (LPA) significantly heightens the susceptibility of both type 2 diabetes mellitus (T2DM) and chronic renal disease. Nearly half of population diagnosed with T2DM globally worsen into diabetic kidney disease (DKD). Focusing on physically inactive populations, we aimed to comprehensively evaluate the trends over time and regional changes in T2DM-associated DKD attributable to LPA burden.</p><p><strong>Methods: </strong>We utilized data of the 2021 Global Burden of Disease (GBD) Study to initially assess the worldwide effects of T2DM-associated DKD attributable to LPA by computing the numbers and age-standardized rates (ASRs) of death, disability-adjusted life years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs), categorized by subtypes in 2021. Linear regression model was applied to analyze the illness burden from 1990 to 2021. Furthermore, cluster analysis was performed to assess the regional differences in disease burden across GBD regions. Lastly, to forecast the illness burden for the next 25 years, we utilized the autoregressive Integrated Moving Average (ARIMA) and Excess Risk (ER) models.</p><p><strong>Results: </strong>In 2021, the fatalities attributed to T2DM-related DKD attributable to LPA amounted to 30835 (95%UI: 12346-51646) cases, with 698484 (95%UI: 275039-1158032) DALYs. The ASRs of death and DALYs were 0.38 (95%UI: 0.15-0.63) and 8.19 (95%UI: 3.21-13.6) per 100000 individuals, respectively. Between 1990 and 2021, there was a notable escalation in deaths, DALYs, YLDs, and YLLs, as well as their ASRs. The highest burden was observed among males, older adults (aged 70 years and above), and middle Socio-demographic Index (SDI). Significant differences were noted in the disease burden among various regions and countries as defined by the GBD study. Predictive analyses indicate a continued escalation of this burden by the year 2050.</p><p><strong>Conclusions: </strong>The global impact of DKD attributable to LPA remains considerable, with significant disparities noted across different genders, ages, and regions. To mitigate this burden, it is crucial to implement effective interventions aimed at addressing physical inactivity, specifically designed for targeted demographic groups.</p>","PeriodicalId":12447,"journal":{"name":"Frontiers in Endocrinology","volume":"16 ","pages":"1625973"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Global, regional, and national burden of type 2 diabetes-related diabetic kidney disease attributable to low physical activity from 1990 to 2021: a systematic analysis of the Global Burden of Disease Study 2021 with predictions to 2050.\",\"authors\":\"Mei Wang, Ruihua Yan, Wenbo Xia, Yongcai Gao, Yonghua Liu, Li Bao, Hongyan Luo, Jing E, Hui Wang, Bo Li, Yali Zheng\",\"doi\":\"10.3389/fendo.2025.1625973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Low physical activity (LPA) significantly heightens the susceptibility of both type 2 diabetes mellitus (T2DM) and chronic renal disease. Nearly half of population diagnosed with T2DM globally worsen into diabetic kidney disease (DKD). Focusing on physically inactive populations, we aimed to comprehensively evaluate the trends over time and regional changes in T2DM-associated DKD attributable to LPA burden.</p><p><strong>Methods: </strong>We utilized data of the 2021 Global Burden of Disease (GBD) Study to initially assess the worldwide effects of T2DM-associated DKD attributable to LPA by computing the numbers and age-standardized rates (ASRs) of death, disability-adjusted life years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs), categorized by subtypes in 2021. Linear regression model was applied to analyze the illness burden from 1990 to 2021. Furthermore, cluster analysis was performed to assess the regional differences in disease burden across GBD regions. Lastly, to forecast the illness burden for the next 25 years, we utilized the autoregressive Integrated Moving Average (ARIMA) and Excess Risk (ER) models.</p><p><strong>Results: </strong>In 2021, the fatalities attributed to T2DM-related DKD attributable to LPA amounted to 30835 (95%UI: 12346-51646) cases, with 698484 (95%UI: 275039-1158032) DALYs. The ASRs of death and DALYs were 0.38 (95%UI: 0.15-0.63) and 8.19 (95%UI: 3.21-13.6) per 100000 individuals, respectively. Between 1990 and 2021, there was a notable escalation in deaths, DALYs, YLDs, and YLLs, as well as their ASRs. The highest burden was observed among males, older adults (aged 70 years and above), and middle Socio-demographic Index (SDI). Significant differences were noted in the disease burden among various regions and countries as defined by the GBD study. Predictive analyses indicate a continued escalation of this burden by the year 2050.</p><p><strong>Conclusions: </strong>The global impact of DKD attributable to LPA remains considerable, with significant disparities noted across different genders, ages, and regions. To mitigate this burden, it is crucial to implement effective interventions aimed at addressing physical inactivity, specifically designed for targeted demographic groups.</p>\",\"PeriodicalId\":12447,\"journal\":{\"name\":\"Frontiers in Endocrinology\",\"volume\":\"16 \",\"pages\":\"1625973\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fendo.2025.1625973\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fendo.2025.1625973","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Global, regional, and national burden of type 2 diabetes-related diabetic kidney disease attributable to low physical activity from 1990 to 2021: a systematic analysis of the Global Burden of Disease Study 2021 with predictions to 2050.
Background: Low physical activity (LPA) significantly heightens the susceptibility of both type 2 diabetes mellitus (T2DM) and chronic renal disease. Nearly half of population diagnosed with T2DM globally worsen into diabetic kidney disease (DKD). Focusing on physically inactive populations, we aimed to comprehensively evaluate the trends over time and regional changes in T2DM-associated DKD attributable to LPA burden.
Methods: We utilized data of the 2021 Global Burden of Disease (GBD) Study to initially assess the worldwide effects of T2DM-associated DKD attributable to LPA by computing the numbers and age-standardized rates (ASRs) of death, disability-adjusted life years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs), categorized by subtypes in 2021. Linear regression model was applied to analyze the illness burden from 1990 to 2021. Furthermore, cluster analysis was performed to assess the regional differences in disease burden across GBD regions. Lastly, to forecast the illness burden for the next 25 years, we utilized the autoregressive Integrated Moving Average (ARIMA) and Excess Risk (ER) models.
Results: In 2021, the fatalities attributed to T2DM-related DKD attributable to LPA amounted to 30835 (95%UI: 12346-51646) cases, with 698484 (95%UI: 275039-1158032) DALYs. The ASRs of death and DALYs were 0.38 (95%UI: 0.15-0.63) and 8.19 (95%UI: 3.21-13.6) per 100000 individuals, respectively. Between 1990 and 2021, there was a notable escalation in deaths, DALYs, YLDs, and YLLs, as well as their ASRs. The highest burden was observed among males, older adults (aged 70 years and above), and middle Socio-demographic Index (SDI). Significant differences were noted in the disease burden among various regions and countries as defined by the GBD study. Predictive analyses indicate a continued escalation of this burden by the year 2050.
Conclusions: The global impact of DKD attributable to LPA remains considerable, with significant disparities noted across different genders, ages, and regions. To mitigate this burden, it is crucial to implement effective interventions aimed at addressing physical inactivity, specifically designed for targeted demographic groups.
期刊介绍:
Frontiers in Endocrinology is a field journal of the "Frontiers in" journal series.
In today’s world, endocrinology is becoming increasingly important as it underlies many of the challenges societies face - from obesity and diabetes to reproduction, population control and aging. Endocrinology covers a broad field from basic molecular and cellular communication through to clinical care and some of the most crucial public health issues. The journal, thus, welcomes outstanding contributions in any domain of endocrinology.
Frontiers in Endocrinology publishes articles on the most outstanding discoveries across a wide research spectrum of Endocrinology. The mission of Frontiers in Endocrinology is to bring all relevant Endocrinology areas together on a single platform.