Kevin Dzobo, Traci A Wilgus, Vanessa Zamora Mora, Audry Zoncsich, Roberto de Mezerville, Nonhlanhla Khumalo, Ardeshir Bayat
{"title":"硅胶乳房植入体整合的仿生优化:对伤口愈合和异物反应的见解。","authors":"Kevin Dzobo, Traci A Wilgus, Vanessa Zamora Mora, Audry Zoncsich, Roberto de Mezerville, Nonhlanhla Khumalo, Ardeshir Bayat","doi":"10.3389/fbioe.2025.1668930","DOIUrl":null,"url":null,"abstract":"<p><p>Breast augmentation is the most prevalent aesthetic surgical procedure worldwide. While silicone breast implants have evolved in terms of safety and biocompatibility, they inevitably trigger a foreign body response (FBR). This complex process can lead to fibrous encapsulation, capsular contracture, and other complications, often necessitating invasive revision surgeries. This review comprehensively analyzes the molecular and cellular mechanisms underlying FBR, emphasizing the crucial role of implant surface properties. We demonstrate how these properties, including topography, hydrophobicity, and charge, govern the initial protein adsorption patterns, effectively establishing a \"molecular fingerprint\" that dictates subsequent cellular interactions. This, in turn, orchestrates immune cell activation, notably macrophages, which exhibit plasticity in their polarization into pro-inflammatory (M1) and pro-fibrotic (M2) phenotypes. The balance between these phenotypes influences the extent of fibrosis and capsular contracture. We explored the five distinct phases of FBR: protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell (FBGC) formation, and encapsulation. The impact of implant surface properties on each phase was elucidated, highlighting the dynamic interplay between macrophages, lymphocytes, and matrix. The phenomenon of \"frustrated phagocytosis,\" where macrophages fail to engulf the implant, leading to FBGC formation and chronic inflammation, is also examined. Finally, we explore promising strategies to modulate FBR and enhance implant biocompatibility, including biomimetic coatings, the use of decellularized matrices, and therapies aimed at disrupting specific molecular pathways involved in fibrosis. This review provides insights into the development of next-generation implants that can harmoniously integrate with the body, minimizing FBR and ensuring long-term clinical success.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1668930"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomimetic optimization of silicone breast implant integration: insights into wound healing and the foreign body response.\",\"authors\":\"Kevin Dzobo, Traci A Wilgus, Vanessa Zamora Mora, Audry Zoncsich, Roberto de Mezerville, Nonhlanhla Khumalo, Ardeshir Bayat\",\"doi\":\"10.3389/fbioe.2025.1668930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast augmentation is the most prevalent aesthetic surgical procedure worldwide. While silicone breast implants have evolved in terms of safety and biocompatibility, they inevitably trigger a foreign body response (FBR). This complex process can lead to fibrous encapsulation, capsular contracture, and other complications, often necessitating invasive revision surgeries. This review comprehensively analyzes the molecular and cellular mechanisms underlying FBR, emphasizing the crucial role of implant surface properties. We demonstrate how these properties, including topography, hydrophobicity, and charge, govern the initial protein adsorption patterns, effectively establishing a \\\"molecular fingerprint\\\" that dictates subsequent cellular interactions. This, in turn, orchestrates immune cell activation, notably macrophages, which exhibit plasticity in their polarization into pro-inflammatory (M1) and pro-fibrotic (M2) phenotypes. The balance between these phenotypes influences the extent of fibrosis and capsular contracture. We explored the five distinct phases of FBR: protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell (FBGC) formation, and encapsulation. The impact of implant surface properties on each phase was elucidated, highlighting the dynamic interplay between macrophages, lymphocytes, and matrix. The phenomenon of \\\"frustrated phagocytosis,\\\" where macrophages fail to engulf the implant, leading to FBGC formation and chronic inflammation, is also examined. Finally, we explore promising strategies to modulate FBR and enhance implant biocompatibility, including biomimetic coatings, the use of decellularized matrices, and therapies aimed at disrupting specific molecular pathways involved in fibrosis. This review provides insights into the development of next-generation implants that can harmoniously integrate with the body, minimizing FBR and ensuring long-term clinical success.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1668930\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1668930\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1668930","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biomimetic optimization of silicone breast implant integration: insights into wound healing and the foreign body response.
Breast augmentation is the most prevalent aesthetic surgical procedure worldwide. While silicone breast implants have evolved in terms of safety and biocompatibility, they inevitably trigger a foreign body response (FBR). This complex process can lead to fibrous encapsulation, capsular contracture, and other complications, often necessitating invasive revision surgeries. This review comprehensively analyzes the molecular and cellular mechanisms underlying FBR, emphasizing the crucial role of implant surface properties. We demonstrate how these properties, including topography, hydrophobicity, and charge, govern the initial protein adsorption patterns, effectively establishing a "molecular fingerprint" that dictates subsequent cellular interactions. This, in turn, orchestrates immune cell activation, notably macrophages, which exhibit plasticity in their polarization into pro-inflammatory (M1) and pro-fibrotic (M2) phenotypes. The balance between these phenotypes influences the extent of fibrosis and capsular contracture. We explored the five distinct phases of FBR: protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell (FBGC) formation, and encapsulation. The impact of implant surface properties on each phase was elucidated, highlighting the dynamic interplay between macrophages, lymphocytes, and matrix. The phenomenon of "frustrated phagocytosis," where macrophages fail to engulf the implant, leading to FBGC formation and chronic inflammation, is also examined. Finally, we explore promising strategies to modulate FBR and enhance implant biocompatibility, including biomimetic coatings, the use of decellularized matrices, and therapies aimed at disrupting specific molecular pathways involved in fibrosis. This review provides insights into the development of next-generation implants that can harmoniously integrate with the body, minimizing FBR and ensuring long-term clinical success.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.