裸岸大叶藻移植促进了现存大叶藻结构和功能的快速镜像。

IF 2.3 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Estuaries and Coasts Pub Date : 2026-01-01 Epub Date: 2025-09-30 DOI:10.1007/s12237-025-01609-x
Rilee D Sanders, Adam K Obaza, David W Ginsburg, Olivia C Carmack, Benjamin C Grime, Heather Burdick, Tom K Ford, James J Leichter
{"title":"裸岸大叶藻移植促进了现存大叶藻结构和功能的快速镜像。","authors":"Rilee D Sanders, Adam K Obaza, David W Ginsburg, Olivia C Carmack, Benjamin C Grime, Heather Burdick, Tom K Ford, James J Leichter","doi":"10.1007/s12237-025-01609-x","DOIUrl":null,"url":null,"abstract":"<p><p>Seagrasses are marine angiosperms that function as ecosystem engineers, forming complex structure that enhance nearshore environments. Globally, seagrass habitats are threatened by intensifying impacts from climate change, which exacerbate non-climatic stressors such as coastal development, invasive species, and overfishing. Advances in the methodological efficacy of active seagrass restoration efforts have sought to mitigate substantial anthropogenic-induced losses. Restoration efforts along the U.S. West Coast have primarily focused on <i>Zostera marina</i> (common eelgrass) in shallow, sheltered estuarine environments, where most coastal development occurs. However, within the Southern California Bight, <i>Zostera</i> spp. also occurs along the exposed coastlines of the California Channel Islands archipelago. Despite their unique location and the ecosystem services they provide, a paucity of information persists on open-coast seagrass systems and restoration efforts. In this study, we conducted a novel transplant of <i>Z. marina</i> on Catalina Island and tracked temporal and spatial performance metrics (i.e., areal coverage, morphometrics, and fish assemblages) at the restoration site and seven extant <i>Z. marina</i> reference beds on the island from 2021 to 2024. The transplant activities successfully established over 0.18 hectares of <i>Z. marina</i> habitat. The transplant site paralleled or exceeded extant reference beds morphometrically (shoot density and blade length) and functionally (fish composition and fish diversity), while concomitantly providing habitat for the occupancy of, and utilization by, federally listed endangered and managed species. Our results provide a model for broadening the scope of, and augmenting strategies for, seagrass habitat recovery beyond conventional restoration spaces by underscoring the role of open-coast seagrasses in enhancing nearshore ecosystem function and resilience.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12237-025-01609-x.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"49 1","pages":"2"},"PeriodicalIF":2.3000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Open-Coast Eelgrass (<i>Zostera marina)</i> Transplant Catalyzes Rapid Mirroring of Structure and Function of Extant Eelgrasses.\",\"authors\":\"Rilee D Sanders, Adam K Obaza, David W Ginsburg, Olivia C Carmack, Benjamin C Grime, Heather Burdick, Tom K Ford, James J Leichter\",\"doi\":\"10.1007/s12237-025-01609-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seagrasses are marine angiosperms that function as ecosystem engineers, forming complex structure that enhance nearshore environments. Globally, seagrass habitats are threatened by intensifying impacts from climate change, which exacerbate non-climatic stressors such as coastal development, invasive species, and overfishing. Advances in the methodological efficacy of active seagrass restoration efforts have sought to mitigate substantial anthropogenic-induced losses. Restoration efforts along the U.S. West Coast have primarily focused on <i>Zostera marina</i> (common eelgrass) in shallow, sheltered estuarine environments, where most coastal development occurs. However, within the Southern California Bight, <i>Zostera</i> spp. also occurs along the exposed coastlines of the California Channel Islands archipelago. Despite their unique location and the ecosystem services they provide, a paucity of information persists on open-coast seagrass systems and restoration efforts. In this study, we conducted a novel transplant of <i>Z. marina</i> on Catalina Island and tracked temporal and spatial performance metrics (i.e., areal coverage, morphometrics, and fish assemblages) at the restoration site and seven extant <i>Z. marina</i> reference beds on the island from 2021 to 2024. The transplant activities successfully established over 0.18 hectares of <i>Z. marina</i> habitat. The transplant site paralleled or exceeded extant reference beds morphometrically (shoot density and blade length) and functionally (fish composition and fish diversity), while concomitantly providing habitat for the occupancy of, and utilization by, federally listed endangered and managed species. Our results provide a model for broadening the scope of, and augmenting strategies for, seagrass habitat recovery beyond conventional restoration spaces by underscoring the role of open-coast seagrasses in enhancing nearshore ecosystem function and resilience.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12237-025-01609-x.</p>\",\"PeriodicalId\":11921,\"journal\":{\"name\":\"Estuaries and Coasts\",\"volume\":\"49 1\",\"pages\":\"2\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuaries and Coasts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-025-01609-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-025-01609-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海草是海洋被子植物,具有生态系统工程师的功能,形成了改善近岸环境的复杂结构。在全球范围内,海草栖息地受到气候变化影响加剧的威胁,这加剧了沿海开发、入侵物种和过度捕捞等非气候压力因素。在积极的海草恢复工作的方法学功效方面取得的进展,已寻求减轻大量人为造成的损失。美国西海岸的恢复工作主要集中在浅水、受庇护的河口环境中的Zostera marina(普通大叶藻),大多数沿海开发都发生在这里。然而,在南加州湾,Zostera也出现在加利福尼亚海峡群岛裸露的海岸线上。尽管它们独特的位置和提供的生态系统服务,但关于开放海岸海草系统和恢复工作的信息仍然缺乏。在这项研究中,我们在Catalina岛上进行了一项新的Z. marina移植,并在2021年至2024年期间在岛上的恢复地点和七个现有的Z. marina参考床上跟踪了时空性能指标(即面积覆盖、形态计量学和鱼类组合)。移植活动成功地建立了超过0.18公顷的Z. marina栖息地。移植地点在形态(枝密度和叶片长度)和功能(鱼类组成和鱼类多样性)上与现有参考床平行或超过,同时为联邦濒危和受管理物种的占用和利用提供栖息地。我们的研究结果通过强调开放海岸海草在增强近岸生态系统功能和恢复力方面的作用,为扩大海草栖息地恢复的范围和增强策略提供了一个模型。补充信息:在线版本包含补充资料,提供地址为10.1007/s12237-025-01609-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open-Coast Eelgrass (Zostera marina) Transplant Catalyzes Rapid Mirroring of Structure and Function of Extant Eelgrasses.

Seagrasses are marine angiosperms that function as ecosystem engineers, forming complex structure that enhance nearshore environments. Globally, seagrass habitats are threatened by intensifying impacts from climate change, which exacerbate non-climatic stressors such as coastal development, invasive species, and overfishing. Advances in the methodological efficacy of active seagrass restoration efforts have sought to mitigate substantial anthropogenic-induced losses. Restoration efforts along the U.S. West Coast have primarily focused on Zostera marina (common eelgrass) in shallow, sheltered estuarine environments, where most coastal development occurs. However, within the Southern California Bight, Zostera spp. also occurs along the exposed coastlines of the California Channel Islands archipelago. Despite their unique location and the ecosystem services they provide, a paucity of information persists on open-coast seagrass systems and restoration efforts. In this study, we conducted a novel transplant of Z. marina on Catalina Island and tracked temporal and spatial performance metrics (i.e., areal coverage, morphometrics, and fish assemblages) at the restoration site and seven extant Z. marina reference beds on the island from 2021 to 2024. The transplant activities successfully established over 0.18 hectares of Z. marina habitat. The transplant site paralleled or exceeded extant reference beds morphometrically (shoot density and blade length) and functionally (fish composition and fish diversity), while concomitantly providing habitat for the occupancy of, and utilization by, federally listed endangered and managed species. Our results provide a model for broadening the scope of, and augmenting strategies for, seagrass habitat recovery beyond conventional restoration spaces by underscoring the role of open-coast seagrasses in enhancing nearshore ecosystem function and resilience.

Supplementary information: The online version contains supplementary material available at 10.1007/s12237-025-01609-x.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Estuaries and Coasts
Estuaries and Coasts 环境科学-海洋与淡水生物学
CiteScore
5.60
自引率
11.10%
发文量
107
审稿时长
12-24 weeks
期刊介绍: Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信