放射组学在FAI中的应用:现状与展望。

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Hariharan Subbiah Ponniah, Eros Montin, Srikar Namireddy, Riccardo Lattanzi, Kartik Logishetty
{"title":"放射组学在FAI中的应用:现状与展望。","authors":"Hariharan Subbiah Ponniah, Eros Montin, Srikar Namireddy, Riccardo Lattanzi, Kartik Logishetty","doi":"10.1302/2046-3758.1410.BJR-2024-0353.R2","DOIUrl":null,"url":null,"abstract":"<p><p>Femoroacetabular impingement (FAI) is caused by abnormal contact between the femur and acetabulum, resulting in pain, limited motion, and early osteoarthritis. Existing imaging techniques for diagnosing FAI face considerable challenges. Radiomics involves the quantitative extraction and analysis of imaging features using advanced algorithms, often combined with machine learning (ML), to enhance diagnostic and prognostic precision. When integrated with ML, radiomics can identify patterns beyond conventional imaging measurements, potentially enabling automated, precise, and reproducible assessment of hip morphology and pathology. Early studies demonstrate its potential to differentiate between normal, symptomatic, and asymptomatic cam-type hips. However, challenges persist, including the standardization of imaging protocols, feature selection, access to large datasets, and the explainability of models. This review summarizes the state of the art in radiomics for FAI and highlights its future applications.</p>","PeriodicalId":9074,"journal":{"name":"Bone & Joint Research","volume":"14 10","pages":"832-838"},"PeriodicalIF":5.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492042/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics in FAI: current status and perspectives.\",\"authors\":\"Hariharan Subbiah Ponniah, Eros Montin, Srikar Namireddy, Riccardo Lattanzi, Kartik Logishetty\",\"doi\":\"10.1302/2046-3758.1410.BJR-2024-0353.R2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Femoroacetabular impingement (FAI) is caused by abnormal contact between the femur and acetabulum, resulting in pain, limited motion, and early osteoarthritis. Existing imaging techniques for diagnosing FAI face considerable challenges. Radiomics involves the quantitative extraction and analysis of imaging features using advanced algorithms, often combined with machine learning (ML), to enhance diagnostic and prognostic precision. When integrated with ML, radiomics can identify patterns beyond conventional imaging measurements, potentially enabling automated, precise, and reproducible assessment of hip morphology and pathology. Early studies demonstrate its potential to differentiate between normal, symptomatic, and asymptomatic cam-type hips. However, challenges persist, including the standardization of imaging protocols, feature selection, access to large datasets, and the explainability of models. This review summarizes the state of the art in radiomics for FAI and highlights its future applications.</p>\",\"PeriodicalId\":9074,\"journal\":{\"name\":\"Bone & Joint Research\",\"volume\":\"14 10\",\"pages\":\"832-838\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12492042/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone & Joint Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1302/2046-3758.1410.BJR-2024-0353.R2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone & Joint Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1302/2046-3758.1410.BJR-2024-0353.R2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

股骨髋臼撞击(FAI)是由股骨与髋臼异常接触引起的,导致疼痛、运动受限和早期骨关节炎。现有诊断FAI的成像技术面临相当大的挑战。放射组学涉及使用先进算法定量提取和分析成像特征,通常与机器学习(ML)相结合,以提高诊断和预后精度。当与ML集成时,放射组学可以识别超出常规成像测量的模式,可能实现对髋关节形态和病理的自动化、精确和可重复的评估。早期的研究表明,它有可能区分正常、有症状和无症状的凸轮型髋关节。然而,挑战依然存在,包括成像协议的标准化、特征选择、大数据集的访问以及模型的可解释性。本文综述了FAI放射组学研究的最新进展,并对其未来的应用前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics in FAI: current status and perspectives.

Femoroacetabular impingement (FAI) is caused by abnormal contact between the femur and acetabulum, resulting in pain, limited motion, and early osteoarthritis. Existing imaging techniques for diagnosing FAI face considerable challenges. Radiomics involves the quantitative extraction and analysis of imaging features using advanced algorithms, often combined with machine learning (ML), to enhance diagnostic and prognostic precision. When integrated with ML, radiomics can identify patterns beyond conventional imaging measurements, potentially enabling automated, precise, and reproducible assessment of hip morphology and pathology. Early studies demonstrate its potential to differentiate between normal, symptomatic, and asymptomatic cam-type hips. However, challenges persist, including the standardization of imaging protocols, feature selection, access to large datasets, and the explainability of models. This review summarizes the state of the art in radiomics for FAI and highlights its future applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone & Joint Research
Bone & Joint Research CELL & TISSUE ENGINEERING-ORTHOPEDICS
CiteScore
7.40
自引率
23.90%
发文量
156
审稿时长
12 weeks
期刊介绍: The gold open access journal for the musculoskeletal sciences. Included in PubMed and available in PubMed Central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信