增强硒补充通过维持钙稳态调节Sik1通路延长寿命和延缓多器官衰老。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Yu, Jintao Song, Mengjiao Guo, RuZe Ma, Mingyang Du, Zhe Xun, Xu Liu, RongXia Xu, Xiaochun Xie, Peilin Qi, Yujie Chen, Dan Shao, Chao Yang, Liang Wang, Xiaoyu Song, Difei Wang
{"title":"增强硒补充通过维持钙稳态调节Sik1通路延长寿命和延缓多器官衰老。","authors":"Yang Yu, Jintao Song, Mengjiao Guo, RuZe Ma, Mingyang Du, Zhe Xun, Xu Liu, RongXia Xu, Xiaochun Xie, Peilin Qi, Yujie Chen, Dan Shao, Chao Yang, Liang Wang, Xiaoyu Song, Difei Wang","doi":"10.1002/advs.202511813","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium supplementation has potential in treating aging-related disorders like neurodegenerative and cardiovascular diseases, but its use is limited by poor bioavailability, a narrow therapeutic window, and unclear mechanisms. To overcome this, redox-dual-responsive diselenide-bridged mesoporous silica nanoparticles (SeMSNs) are developed. SeMSNs effectively reduce oxidative stress and downregulate senescence markers (p16, p21), suppressing senescence in both naturally aged primary mouse embryonic fibroblasts (MEFs) and H<sub>2</sub>O<sub>2</sub>-induced HEK-293T cells. They show prolonged antioxidant effects (p < 0.05) and lower cytotoxicity (p < 0.01) than commercial selenomethionine. In aged mice, SeMSNs extend lifespan, reduce frailty, and improve age-related conditions, including muscle atrophy, renal dysfunction, cognitive decline, and hepatic steatosis, while restoring metabolic balance. They outperform conventional organically-bridged mesoporous silica nanoparticles (MSNs) and disulfide-bridged MSNs (SMSNs) (p < 0.01). Mechanistically, SeMSNs upregulate selenoproteins (GPx1, SelK), suppress endoplasmic reticulum (ER) stress-mediated calcium release, maintain calcium homeostasis, and inhibit NFATc2-driven Sik1 transcription, reducing p21/p16. Clinical data confirm an inverse correlation between selenium levels and aging biomarkers (p < 0.0001). SeMSNs also restore adipogenic differentiation in human adipose progenitor cells via calcium-NFATc2-Sik1 signaling. These results demonstrate the superiority of SeMSNs over traditional selenium forms, providing a nanotherapeutic strategy to combat multi-organ aging and promote healthy longevity.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e11813"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Selenium Supplement Extends Lifespan and Delays Multi-Organs Aging by Regulating the Sik1 Pathway Through Maintaining Calcium Homeostasis.\",\"authors\":\"Yang Yu, Jintao Song, Mengjiao Guo, RuZe Ma, Mingyang Du, Zhe Xun, Xu Liu, RongXia Xu, Xiaochun Xie, Peilin Qi, Yujie Chen, Dan Shao, Chao Yang, Liang Wang, Xiaoyu Song, Difei Wang\",\"doi\":\"10.1002/advs.202511813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selenium supplementation has potential in treating aging-related disorders like neurodegenerative and cardiovascular diseases, but its use is limited by poor bioavailability, a narrow therapeutic window, and unclear mechanisms. To overcome this, redox-dual-responsive diselenide-bridged mesoporous silica nanoparticles (SeMSNs) are developed. SeMSNs effectively reduce oxidative stress and downregulate senescence markers (p16, p21), suppressing senescence in both naturally aged primary mouse embryonic fibroblasts (MEFs) and H<sub>2</sub>O<sub>2</sub>-induced HEK-293T cells. They show prolonged antioxidant effects (p < 0.05) and lower cytotoxicity (p < 0.01) than commercial selenomethionine. In aged mice, SeMSNs extend lifespan, reduce frailty, and improve age-related conditions, including muscle atrophy, renal dysfunction, cognitive decline, and hepatic steatosis, while restoring metabolic balance. They outperform conventional organically-bridged mesoporous silica nanoparticles (MSNs) and disulfide-bridged MSNs (SMSNs) (p < 0.01). Mechanistically, SeMSNs upregulate selenoproteins (GPx1, SelK), suppress endoplasmic reticulum (ER) stress-mediated calcium release, maintain calcium homeostasis, and inhibit NFATc2-driven Sik1 transcription, reducing p21/p16. Clinical data confirm an inverse correlation between selenium levels and aging biomarkers (p < 0.0001). SeMSNs also restore adipogenic differentiation in human adipose progenitor cells via calcium-NFATc2-Sik1 signaling. These results demonstrate the superiority of SeMSNs over traditional selenium forms, providing a nanotherapeutic strategy to combat multi-organ aging and promote healthy longevity.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e11813\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202511813\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202511813","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硒补充剂在治疗神经退行性疾病和心血管疾病等衰老相关疾病方面具有潜力,但其使用受到生物利用度差、治疗窗口窄和机制不明确的限制。为了克服这一问题,开发了氧化还原双响应的二硒桥接介孔二氧化硅纳米颗粒(SeMSNs)。SeMSNs可有效降低氧化应激,下调衰老标志物(p16, p21),抑制自然衰老的小鼠胚胎成纤维细胞(mef)和h2o2诱导的HEK-293T细胞的衰老。与市售硒代蛋氨酸相比,其抗氧化作用延长(p < 0.05),细胞毒性降低(p < 0.01)。在老年小鼠中,SeMSNs延长寿命,减少虚弱,改善与年龄相关的疾病,包括肌肉萎缩,肾功能障碍,认知能力下降和肝脂肪变性,同时恢复代谢平衡。它们优于传统的有机桥接介孔二氧化硅纳米颗粒(MSNs)和二硫化物桥接的介孔二氧化硅纳米颗粒(SMSNs) (p < 0.01)。在机制上,SeMSNs上调硒蛋白(GPx1, SelK),抑制内质网(ER)应激介导的钙释放,维持钙稳态,抑制nfatc2驱动的Sik1转录,降低p21/p16。临床数据证实硒水平与衰老生物标志物呈负相关(p < 0.0001)。SeMSNs还通过钙- nfatc2 - sik1信号通路恢复人类脂肪祖细胞的成脂分化。这些结果表明SeMSNs优于传统形式的硒,为对抗多器官衰老和促进健康长寿提供了纳米治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Selenium Supplement Extends Lifespan and Delays Multi-Organs Aging by Regulating the Sik1 Pathway Through Maintaining Calcium Homeostasis.

Selenium supplementation has potential in treating aging-related disorders like neurodegenerative and cardiovascular diseases, but its use is limited by poor bioavailability, a narrow therapeutic window, and unclear mechanisms. To overcome this, redox-dual-responsive diselenide-bridged mesoporous silica nanoparticles (SeMSNs) are developed. SeMSNs effectively reduce oxidative stress and downregulate senescence markers (p16, p21), suppressing senescence in both naturally aged primary mouse embryonic fibroblasts (MEFs) and H2O2-induced HEK-293T cells. They show prolonged antioxidant effects (p < 0.05) and lower cytotoxicity (p < 0.01) than commercial selenomethionine. In aged mice, SeMSNs extend lifespan, reduce frailty, and improve age-related conditions, including muscle atrophy, renal dysfunction, cognitive decline, and hepatic steatosis, while restoring metabolic balance. They outperform conventional organically-bridged mesoporous silica nanoparticles (MSNs) and disulfide-bridged MSNs (SMSNs) (p < 0.01). Mechanistically, SeMSNs upregulate selenoproteins (GPx1, SelK), suppress endoplasmic reticulum (ER) stress-mediated calcium release, maintain calcium homeostasis, and inhibit NFATc2-driven Sik1 transcription, reducing p21/p16. Clinical data confirm an inverse correlation between selenium levels and aging biomarkers (p < 0.0001). SeMSNs also restore adipogenic differentiation in human adipose progenitor cells via calcium-NFATc2-Sik1 signaling. These results demonstrate the superiority of SeMSNs over traditional selenium forms, providing a nanotherapeutic strategy to combat multi-organ aging and promote healthy longevity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信