三维过渡金属-氢化锂复合材料的协同光热催化低温合成氨研究。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-03 DOI:10.1002/cssc.202501716
Tongtong Zhang, Shasha Ge, Hongliang Liang, Fei Chang
{"title":"三维过渡金属-氢化锂复合材料的协同光热催化低温合成氨研究。","authors":"Tongtong Zhang, Shasha Ge, Hongliang Liang, Fei Chang","doi":"10.1002/cssc.202501716","DOIUrl":null,"url":null,"abstract":"<p><p>Ammonia synthesis under mild conditions remains a critical yet formidable challenge in sustainable energy research. In this study, we report a novel photothermal ammonia synthesis strategy employing synergistic 3d transition metal-lithium hydride (TMs-LiH) composites. The TMs-LiH system (comprising V-, Cr-, Mn-, Fe-, Co-, and Ni-LiH composites) exhibits universal catalytic performance at low temperatures (100-200 °C), forming a characteristic \"plateau curve\" that indicates ammonia synthesis activity is less dependent on the specific TM component. Crucially, catalytic activity collapses entirely under identical thermal conditions in the absence of light, underscoring the pivotal role of photothermal effects in activating the reactants. Notably, compared to conventional thermochemical ammonia synthesis, the TMs-LiH catalysts under light illumination demonstrate a significant reduction in activation energies and reaction orders for H<sub>2</sub> and NH<sub>3</sub>, revealing enhanced hydrogenation efficiency and ammonia desorption kinetics. Among the tested composites, Fe-LiH exhibits the highest catalytic activity, prompting further investigations into its unique reactivity. Fe-LiH induces a strong interplay with N<sub>2</sub> with the assistance of light, driving the reductive elimination of hydridic hydrogen to H<sub>2</sub>, which likely creates a reduced Fe-LiH<sub>1-x</sub> interface that favor nitrogen fixation to form lithium amide species (LiNH<sub>2</sub>). Subsequent hydrogenation of LiNH<sub>2</sub> on Fe-LiH<sub>1-x</sub> proceeds facilely to produce NH<sub>3</sub>.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501716"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Photothermal Catalysis of 3d Transition Metal-Lithium Hydride Composites for Low-Temperature Ammonia Synthesis.\",\"authors\":\"Tongtong Zhang, Shasha Ge, Hongliang Liang, Fei Chang\",\"doi\":\"10.1002/cssc.202501716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ammonia synthesis under mild conditions remains a critical yet formidable challenge in sustainable energy research. In this study, we report a novel photothermal ammonia synthesis strategy employing synergistic 3d transition metal-lithium hydride (TMs-LiH) composites. The TMs-LiH system (comprising V-, Cr-, Mn-, Fe-, Co-, and Ni-LiH composites) exhibits universal catalytic performance at low temperatures (100-200 °C), forming a characteristic \\\"plateau curve\\\" that indicates ammonia synthesis activity is less dependent on the specific TM component. Crucially, catalytic activity collapses entirely under identical thermal conditions in the absence of light, underscoring the pivotal role of photothermal effects in activating the reactants. Notably, compared to conventional thermochemical ammonia synthesis, the TMs-LiH catalysts under light illumination demonstrate a significant reduction in activation energies and reaction orders for H<sub>2</sub> and NH<sub>3</sub>, revealing enhanced hydrogenation efficiency and ammonia desorption kinetics. Among the tested composites, Fe-LiH exhibits the highest catalytic activity, prompting further investigations into its unique reactivity. Fe-LiH induces a strong interplay with N<sub>2</sub> with the assistance of light, driving the reductive elimination of hydridic hydrogen to H<sub>2</sub>, which likely creates a reduced Fe-LiH<sub>1-x</sub> interface that favor nitrogen fixation to form lithium amide species (LiNH<sub>2</sub>). Subsequent hydrogenation of LiNH<sub>2</sub> on Fe-LiH<sub>1-x</sub> proceeds facilely to produce NH<sub>3</sub>.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501716\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501716\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501716","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

温和条件下的氨合成是可持续能源研究中的一个关键而艰巨的挑战。在这项研究中,我们报告了一种新的光热氨合成策略,采用协同三维过渡金属-氢化锂(TMs-LiH)复合材料。TMs-LiH体系(包括V-、Cr-、Mn-、Fe-、Co-和Ni-LiH复合材料)在低温(100-200°C)下表现出普遍的催化性能,形成一个特征的“平台曲线”,表明氨合成活性较少依赖于特定的TM成分。至关重要的是,在没有光的相同热条件下,催化活性完全崩溃,强调了光热效应在激活反应物中的关键作用。值得注意的是,与传统的热化学合成氨相比,光照下的TMs-LiH催化剂显著降低了H2和NH3的活化能和反应顺序,表明加氢效率和氨脱附动力学得到了提高。在所测试的复合材料中,Fe-LiH表现出最高的催化活性,促使进一步研究其独特的反应活性。Fe-LiH在光的帮助下与N2发生强烈的相互作用,驱动氢化氢的还原消除为H2,这可能会产生一个还原的Fe-LiH1-x界面,有利于固氮形成锂酰胺(LiNH2)。随后,LiNH2在Fe-LiH1-x上的加氢反应很容易产生NH3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Photothermal Catalysis of 3d Transition Metal-Lithium Hydride Composites for Low-Temperature Ammonia Synthesis.

Ammonia synthesis under mild conditions remains a critical yet formidable challenge in sustainable energy research. In this study, we report a novel photothermal ammonia synthesis strategy employing synergistic 3d transition metal-lithium hydride (TMs-LiH) composites. The TMs-LiH system (comprising V-, Cr-, Mn-, Fe-, Co-, and Ni-LiH composites) exhibits universal catalytic performance at low temperatures (100-200 °C), forming a characteristic "plateau curve" that indicates ammonia synthesis activity is less dependent on the specific TM component. Crucially, catalytic activity collapses entirely under identical thermal conditions in the absence of light, underscoring the pivotal role of photothermal effects in activating the reactants. Notably, compared to conventional thermochemical ammonia synthesis, the TMs-LiH catalysts under light illumination demonstrate a significant reduction in activation energies and reaction orders for H2 and NH3, revealing enhanced hydrogenation efficiency and ammonia desorption kinetics. Among the tested composites, Fe-LiH exhibits the highest catalytic activity, prompting further investigations into its unique reactivity. Fe-LiH induces a strong interplay with N2 with the assistance of light, driving the reductive elimination of hydridic hydrogen to H2, which likely creates a reduced Fe-LiH1-x interface that favor nitrogen fixation to form lithium amide species (LiNH2). Subsequent hydrogenation of LiNH2 on Fe-LiH1-x proceeds facilely to produce NH3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信