Liuxian Chen, Qin Huang, Yongjie Liu, Ke Chen, Qing Yang, Hua Tang, Dan Wang, Zhenrong Tang
{"title":"半乳糖工程双响应纳米载体ASO/CRISPR-Cas9递送抑制HBV复制","authors":"Liuxian Chen, Qin Huang, Yongjie Liu, Ke Chen, Qing Yang, Hua Tang, Dan Wang, Zhenrong Tang","doi":"10.1002/adhm.202502835","DOIUrl":null,"url":null,"abstract":"<p><p>Complete hepatitis B virus (HBV) cure is hindered primarily by the stable persistence of covalently closed circular DNA (cccDNA). Gene editing approaches to eradicate HBV by targeting cccDNA face challenges and limitations due to suboptimal editing efficiency and substantial off-target effects. Herein, a combinatorial therapeutic strategy is developed that integrates CRISPR/Cas9-mediated cccDNA disruption with an antisense oligonucleotide (ASO)-targeted degradation of pregenomic RNA (pgRNA). To overcome delivery challenges, a hepatocyte-targeting nanocarrier (UACPG) is engineered, featuring low immunogenicity, high payload capacity, and dual-stimuli responsiveness. The UACPG platform enabled liver-specific delivery through surface-conjugated targeting ligands, followed by on-demand release of Cas9 ribonucleoprotein complexes and ASO via RNase H-dependent degradation and near-infrared (NIR) light activation. The results demonstrated that UACPG can effectively reduce HBV replication and viral antigen levels, while significantly lowering cccDNA in hydrodynamic HBV-infected mouse models, with no significant off-target effects observed. This nanocarrier achieved the spatiotemporally controlled release of gene-editing systems in vitro and in vivo, significantly inhibiting the replication of HBV, thereby establishing an innovative technological platform for developing curative HBV therapies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e02835"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Galactose-Engineered Dual-Responsive Nanocarrier for ASO/CRISPR-Cas9 Delivery to Inhibit HBV Replication.\",\"authors\":\"Liuxian Chen, Qin Huang, Yongjie Liu, Ke Chen, Qing Yang, Hua Tang, Dan Wang, Zhenrong Tang\",\"doi\":\"10.1002/adhm.202502835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Complete hepatitis B virus (HBV) cure is hindered primarily by the stable persistence of covalently closed circular DNA (cccDNA). Gene editing approaches to eradicate HBV by targeting cccDNA face challenges and limitations due to suboptimal editing efficiency and substantial off-target effects. Herein, a combinatorial therapeutic strategy is developed that integrates CRISPR/Cas9-mediated cccDNA disruption with an antisense oligonucleotide (ASO)-targeted degradation of pregenomic RNA (pgRNA). To overcome delivery challenges, a hepatocyte-targeting nanocarrier (UACPG) is engineered, featuring low immunogenicity, high payload capacity, and dual-stimuli responsiveness. The UACPG platform enabled liver-specific delivery through surface-conjugated targeting ligands, followed by on-demand release of Cas9 ribonucleoprotein complexes and ASO via RNase H-dependent degradation and near-infrared (NIR) light activation. The results demonstrated that UACPG can effectively reduce HBV replication and viral antigen levels, while significantly lowering cccDNA in hydrodynamic HBV-infected mouse models, with no significant off-target effects observed. This nanocarrier achieved the spatiotemporally controlled release of gene-editing systems in vitro and in vivo, significantly inhibiting the replication of HBV, thereby establishing an innovative technological platform for developing curative HBV therapies.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e02835\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202502835\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502835","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Galactose-Engineered Dual-Responsive Nanocarrier for ASO/CRISPR-Cas9 Delivery to Inhibit HBV Replication.
Complete hepatitis B virus (HBV) cure is hindered primarily by the stable persistence of covalently closed circular DNA (cccDNA). Gene editing approaches to eradicate HBV by targeting cccDNA face challenges and limitations due to suboptimal editing efficiency and substantial off-target effects. Herein, a combinatorial therapeutic strategy is developed that integrates CRISPR/Cas9-mediated cccDNA disruption with an antisense oligonucleotide (ASO)-targeted degradation of pregenomic RNA (pgRNA). To overcome delivery challenges, a hepatocyte-targeting nanocarrier (UACPG) is engineered, featuring low immunogenicity, high payload capacity, and dual-stimuli responsiveness. The UACPG platform enabled liver-specific delivery through surface-conjugated targeting ligands, followed by on-demand release of Cas9 ribonucleoprotein complexes and ASO via RNase H-dependent degradation and near-infrared (NIR) light activation. The results demonstrated that UACPG can effectively reduce HBV replication and viral antigen levels, while significantly lowering cccDNA in hydrodynamic HBV-infected mouse models, with no significant off-target effects observed. This nanocarrier achieved the spatiotemporally controlled release of gene-editing systems in vitro and in vivo, significantly inhibiting the replication of HBV, thereby establishing an innovative technological platform for developing curative HBV therapies.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.