高斯自由费米子系统非马尔可夫性的可计算测度

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Giuliano Chiriacò
{"title":"高斯自由费米子系统非马尔可夫性的可计算测度","authors":"Giuliano Chiriacò","doi":"10.1140/epjb/s10051-025-01055-5","DOIUrl":null,"url":null,"abstract":"<p>We investigate measures of non-Markovianity in open quantum systems governed by Gaussian free fermionic dynamics. Standard indicators of non-Markovian behavior, such as the BLP and LFS measures, are revisited in this context. We show that for Gaussian states, trace-based distances—specifically the Hilbert–Schmidt norm—and second-order Rényi mutual information can be efficiently expressed in terms of two-point correlation functions, enabling practical computation even in systems where the full-density matrix is intractable. Crucially, this framework remains valid even when the density matrix of the system is an average over stochastic Gaussian trajectories, yielding a non-Gaussian state. We present efficient numerical protocols based on this structure and demonstrate their feasibility through a small-scale simulation. Our approach opens a scalable path to quantifying non-Markovianity in interacting or measured fermionic systems, with applications in quantum information and non-equilibrium quantum dynamics.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-01055-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Computable measures of non-Markovianity for Gaussian free fermion systems\",\"authors\":\"Giuliano Chiriacò\",\"doi\":\"10.1140/epjb/s10051-025-01055-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate measures of non-Markovianity in open quantum systems governed by Gaussian free fermionic dynamics. Standard indicators of non-Markovian behavior, such as the BLP and LFS measures, are revisited in this context. We show that for Gaussian states, trace-based distances—specifically the Hilbert–Schmidt norm—and second-order Rényi mutual information can be efficiently expressed in terms of two-point correlation functions, enabling practical computation even in systems where the full-density matrix is intractable. Crucially, this framework remains valid even when the density matrix of the system is an average over stochastic Gaussian trajectories, yielding a non-Gaussian state. We present efficient numerical protocols based on this structure and demonstrate their feasibility through a small-scale simulation. Our approach opens a scalable path to quantifying non-Markovianity in interacting or measured fermionic systems, with applications in quantum information and non-equilibrium quantum dynamics.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 9\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-01055-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-01055-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01055-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

研究了由高斯自由费米动力学控制的开放量子系统的非马尔可夫性测度。非马尔可夫行为的标准指标,如BLP和LFS措施,在这种情况下被重新审视。我们表明,对于高斯态,基于迹的距离——特别是希尔伯特-施密特范数——和二阶r尼互信息可以有效地用两点相关函数表示,即使在全密度矩阵难以处理的系统中也能进行实际计算。至关重要的是,即使系统的密度矩阵是随机高斯轨迹的平均值,产生非高斯状态,该框架仍然有效。我们提出了基于这种结构的有效的数值协议,并通过小规模模拟验证了其可行性。我们的方法为在相互作用或测量费米系统中量化非马尔可夫性开辟了一条可扩展的道路,并应用于量子信息和非平衡量子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computable measures of non-Markovianity for Gaussian free fermion systems

We investigate measures of non-Markovianity in open quantum systems governed by Gaussian free fermionic dynamics. Standard indicators of non-Markovian behavior, such as the BLP and LFS measures, are revisited in this context. We show that for Gaussian states, trace-based distances—specifically the Hilbert–Schmidt norm—and second-order Rényi mutual information can be efficiently expressed in terms of two-point correlation functions, enabling practical computation even in systems where the full-density matrix is intractable. Crucially, this framework remains valid even when the density matrix of the system is an average over stochastic Gaussian trajectories, yielding a non-Gaussian state. We present efficient numerical protocols based on this structure and demonstrate their feasibility through a small-scale simulation. Our approach opens a scalable path to quantifying non-Markovianity in interacting or measured fermionic systems, with applications in quantum information and non-equilibrium quantum dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信