光致叠加力学和偶极效应的计算研究

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Fabio Marangi, Giulia Simoncini, Chiara Florindi, Francesco Lodola, Giuseppe Maria Paternò, Guglielmo Lanzani
{"title":"光致叠加力学和偶极效应的计算研究","authors":"Fabio Marangi,&nbsp;Giulia Simoncini,&nbsp;Chiara Florindi,&nbsp;Francesco Lodola,&nbsp;Giuseppe Maria Paternò,&nbsp;Guglielmo Lanzani","doi":"10.1140/epjp/s13360-025-06866-0","DOIUrl":null,"url":null,"abstract":"<div><p>Light-sensitive molecules provide a powerful means to control cellular excitability without genetic modification. Among them, the amphiphilic membrane targeting azobenzene Ziapin2 has emerged as a versatile photo-switch able to modulate membrane potential. Previous studies have attributed its action mainly to an opto-mechanical effect. However, azobenzenes are known to undergo significant light-induced dipole changes, raising the possibility of additional electrical contributions. Here, we combine experimental data and numerical modeling to investigate this dual mechanism in Ziapin2. Our analysis shows that beyond capacitance modulation, a substantial increase in molecular dipole moment (&gt; 6D) can shift membrane surface potential, partially counteracting the hyperpolarizing effect. A model with time-varying surface potential captures key features of published responses and shows that polarity is governed by the membrane interface at which the photo-dipole is expressed, not by the dipole change alone. This combined framework provides a more complete description of Ziapin2 action and enables prospective design of next-generation molecules with tailored selective depolarizing or hyperpolarizing response.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-025-06866-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A computational study of light-induced superimposed mechanical and dipolar effects\",\"authors\":\"Fabio Marangi,&nbsp;Giulia Simoncini,&nbsp;Chiara Florindi,&nbsp;Francesco Lodola,&nbsp;Giuseppe Maria Paternò,&nbsp;Guglielmo Lanzani\",\"doi\":\"10.1140/epjp/s13360-025-06866-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Light-sensitive molecules provide a powerful means to control cellular excitability without genetic modification. Among them, the amphiphilic membrane targeting azobenzene Ziapin2 has emerged as a versatile photo-switch able to modulate membrane potential. Previous studies have attributed its action mainly to an opto-mechanical effect. However, azobenzenes are known to undergo significant light-induced dipole changes, raising the possibility of additional electrical contributions. Here, we combine experimental data and numerical modeling to investigate this dual mechanism in Ziapin2. Our analysis shows that beyond capacitance modulation, a substantial increase in molecular dipole moment (&gt; 6D) can shift membrane surface potential, partially counteracting the hyperpolarizing effect. A model with time-varying surface potential captures key features of published responses and shows that polarity is governed by the membrane interface at which the photo-dipole is expressed, not by the dipole change alone. This combined framework provides a more complete description of Ziapin2 action and enables prospective design of next-generation molecules with tailored selective depolarizing or hyperpolarizing response.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjp/s13360-025-06866-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06866-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06866-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光敏分子提供了一种无需基因修饰就能控制细胞兴奋性的有力手段。其中,针对偶氮苯的两亲性膜Ziapin2已经成为一种能够调节膜电位的多功能光开关。以前的研究将其作用主要归因于光机械效应。然而,偶氮苯已知经历显著的光诱导偶极子变化,提高了额外的电贡献的可能性。本文将实验数据与数值模拟相结合,对Ziapin2的这一双重机制进行了研究。我们的分析表明,除了电容调制之外,分子偶极矩(> 6D)的大幅增加可以移动膜表面电位,部分抵消超极化效应。具有时变表面电位的模型捕获了已发表响应的关键特征,并表明极性是由光偶极子表达的膜界面控制的,而不仅仅是偶极子变化。该组合框架提供了更完整的Ziapin2作用描述,并使具有定制选择性去极化或超极化反应的下一代分子的前瞻性设计成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational study of light-induced superimposed mechanical and dipolar effects

Light-sensitive molecules provide a powerful means to control cellular excitability without genetic modification. Among them, the amphiphilic membrane targeting azobenzene Ziapin2 has emerged as a versatile photo-switch able to modulate membrane potential. Previous studies have attributed its action mainly to an opto-mechanical effect. However, azobenzenes are known to undergo significant light-induced dipole changes, raising the possibility of additional electrical contributions. Here, we combine experimental data and numerical modeling to investigate this dual mechanism in Ziapin2. Our analysis shows that beyond capacitance modulation, a substantial increase in molecular dipole moment (> 6D) can shift membrane surface potential, partially counteracting the hyperpolarizing effect. A model with time-varying surface potential captures key features of published responses and shows that polarity is governed by the membrane interface at which the photo-dipole is expressed, not by the dipole change alone. This combined framework provides a more complete description of Ziapin2 action and enables prospective design of next-generation molecules with tailored selective depolarizing or hyperpolarizing response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信