相变材料动态热调节的新型仿生复合太阳能吸收体

IF 4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hamza Baroud, Fatima Djerfaf, Djalal eddine Bensafieddine, Tahar Aliouar, Sarah Guenou, El Tayeb Bentria
{"title":"相变材料动态热调节的新型仿生复合太阳能吸收体","authors":"Hamza Baroud,&nbsp;Fatima Djerfaf,&nbsp;Djalal eddine Bensafieddine,&nbsp;Tahar Aliouar,&nbsp;Sarah Guenou,&nbsp;El Tayeb Bentria","doi":"10.1007/s11082-025-08458-9","DOIUrl":null,"url":null,"abstract":"<div><p>Solar absorbers are critical to the advancement of renewable energy systems via solar to thermal conversion efficiency optimization. We present a triple bio-inspired hierarchical solar absorber with a simulated 98.2% AM1.5-weighted absorption. Its multiscale synergy of fractal tungsten for omnidirectional harvesting (&gt; 95% at 85° incidence) and MXene nano-arrays for high quality factor (Q) resonances (Q = 114.8 at 1068 nm) and near-perfect NIR capture (99.79% at 1068 nm) demonstrates a potential that outperforms that of existing absorbers. Integrated PCM microcapsules provide dynamic thermal management (60 °C isothermal plateau, 20–30 °C temperature reduction). Numerical simulations confirm strong field confinement and volumetric loss in high MXene-PCM interfaces. Thermal management provides material stability (simulated ΔT &lt; 0.05 °C at 4727 °C) under a flux of 1000 W/m<sup>2</sup>. The structure enhances thermal homogeneity by 10,000 times, setting new standards for deployable solar systems.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New bio-inspired composite solar absorber with dynamic thermal regulation via phase change materials\",\"authors\":\"Hamza Baroud,&nbsp;Fatima Djerfaf,&nbsp;Djalal eddine Bensafieddine,&nbsp;Tahar Aliouar,&nbsp;Sarah Guenou,&nbsp;El Tayeb Bentria\",\"doi\":\"10.1007/s11082-025-08458-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar absorbers are critical to the advancement of renewable energy systems via solar to thermal conversion efficiency optimization. We present a triple bio-inspired hierarchical solar absorber with a simulated 98.2% AM1.5-weighted absorption. Its multiscale synergy of fractal tungsten for omnidirectional harvesting (&gt; 95% at 85° incidence) and MXene nano-arrays for high quality factor (Q) resonances (Q = 114.8 at 1068 nm) and near-perfect NIR capture (99.79% at 1068 nm) demonstrates a potential that outperforms that of existing absorbers. Integrated PCM microcapsules provide dynamic thermal management (60 °C isothermal plateau, 20–30 °C temperature reduction). Numerical simulations confirm strong field confinement and volumetric loss in high MXene-PCM interfaces. Thermal management provides material stability (simulated ΔT &lt; 0.05 °C at 4727 °C) under a flux of 1000 W/m<sup>2</sup>. The structure enhances thermal homogeneity by 10,000 times, setting new standards for deployable solar systems.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 10\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08458-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08458-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

太阳能吸收体通过优化太阳能到热的转换效率,对可再生能源系统的发展至关重要。我们提出了一种具有98.2% am1.5加权吸收率的三重仿生分层太阳能吸收器。其分形钨的多尺度协同效应(85°入射时为95%)和MXene纳米阵列的高质量因子(Q)共振(1068 nm处为Q = 114.8)和近乎完美的近红外捕获(1068 nm处为99.79%)显示了超越现有吸收剂的潜力。集成的PCM微胶囊提供动态热管理(60°C等温平台,20-30°C降温)。数值模拟证实了在高MXene-PCM界面中存在强场约束和体积损失。热管理在1000 W/m2的通量下提供材料稳定性(模拟ΔT <; 0.05°C在4727°C)。这种结构将热均匀性提高了1万倍,为可部署的太阳能系统设定了新的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New bio-inspired composite solar absorber with dynamic thermal regulation via phase change materials

Solar absorbers are critical to the advancement of renewable energy systems via solar to thermal conversion efficiency optimization. We present a triple bio-inspired hierarchical solar absorber with a simulated 98.2% AM1.5-weighted absorption. Its multiscale synergy of fractal tungsten for omnidirectional harvesting (> 95% at 85° incidence) and MXene nano-arrays for high quality factor (Q) resonances (Q = 114.8 at 1068 nm) and near-perfect NIR capture (99.79% at 1068 nm) demonstrates a potential that outperforms that of existing absorbers. Integrated PCM microcapsules provide dynamic thermal management (60 °C isothermal plateau, 20–30 °C temperature reduction). Numerical simulations confirm strong field confinement and volumetric loss in high MXene-PCM interfaces. Thermal management provides material stability (simulated ΔT < 0.05 °C at 4727 °C) under a flux of 1000 W/m2. The structure enhances thermal homogeneity by 10,000 times, setting new standards for deployable solar systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信