利用氧化镧纳米填料调整RPET的带隙和介电性能,用于紫外线屏蔽和光电应用

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Amr Antar, Mahmoud M. Maghawry, Medhat A. Ibrahim, Ahmed I. Ali, Nasser Ayoub, Dongwhi Choi, Galal H. Ramzy
{"title":"利用氧化镧纳米填料调整RPET的带隙和介电性能,用于紫外线屏蔽和光电应用","authors":"Amr Antar,&nbsp;Mahmoud M. Maghawry,&nbsp;Medhat A. Ibrahim,&nbsp;Ahmed I. Ali,&nbsp;Nasser Ayoub,&nbsp;Dongwhi Choi,&nbsp;Galal H. Ramzy","doi":"10.1007/s10854-025-15875-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study reports the functionalization of recycled polyethylene terephthalate (RPET) with lanthanum oxide (La<sub>2</sub>O<sub>3</sub>) nanoparticles at loadings of 1, 2, 4, and 8 wt.% to enhance its physicochemical, optical, dielectric, and thermal properties for advanced material applications. Molecular electrostatic potential (MESP) analysis revealed enhanced charge redistribution and increased electronegativity with La<sub>2</sub>O<sub>3</sub> incorporation, indicating improved chemical reactivity and potential in energy storage systems. X-ray diffraction (XRD) confirmed a transition from amorphous to semi-crystalline structures, maximized at 4 wt.% La<sub>2</sub>O<sub>3</sub>, while FT-IR spectra displayed characteristic peak shifts and bond formations evidencing strong RPET-La<sub>2</sub>O<sub>3</sub> interactions. Optical studies revealed a marked increase in the UV-region absorption coefficient (α) with increasing La<sub>2</sub>O<sub>3</sub> content, indicating enhanced photon-polymer interactions, while maintaining high transparency in the visible region. The direct optical band gap decreased from 3.98 eV (pristine RPET) to 3.77 eV at 8 wt.% loading, confirming matrix-filler interaction and tunability of optical properties. Dielectric analysis showed significant improvements in dielectric constant (ε′), dielectric loss (ε″), and AC conductivity (σ<sub>AC</sub>), with the 4 wt.% composite exhibiting the highest σ<sub>AC</sub> (1.12 × 10<sup>–5</sup> S·cm<sup>−1</sup> at 100 °C) and stable dielectric performance over a broad frequency range. Thermal analysis (TGA and DSC) confirmed enhanced thermal stability, with the 4 wt.% sample exhibiting a 12 °C increase in onset decomposition temperature and altered melting profiles, indicating strong interfacial bonding and the formation of thermally resistant phases. These findings identify 4 wt.% La<sub>2</sub>O<sub>3</sub> as the optimal loading, offering a balanced improvement in optical absorption, dielectric stability, conductivity, and thermal resistance, thereby establishing La<sub>2</sub>O<sub>3</sub>-RPET nanocomposites as promising candidates for UV-shielding, dielectric, and thermally stable conductive materials for electronic and energy applications.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 27","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring bandgap and dielectric properties of RPET using lanthanum oxide nanofillers for UV-shielding and optoelectronic applications\",\"authors\":\"Amr Antar,&nbsp;Mahmoud M. Maghawry,&nbsp;Medhat A. Ibrahim,&nbsp;Ahmed I. Ali,&nbsp;Nasser Ayoub,&nbsp;Dongwhi Choi,&nbsp;Galal H. Ramzy\",\"doi\":\"10.1007/s10854-025-15875-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study reports the functionalization of recycled polyethylene terephthalate (RPET) with lanthanum oxide (La<sub>2</sub>O<sub>3</sub>) nanoparticles at loadings of 1, 2, 4, and 8 wt.% to enhance its physicochemical, optical, dielectric, and thermal properties for advanced material applications. Molecular electrostatic potential (MESP) analysis revealed enhanced charge redistribution and increased electronegativity with La<sub>2</sub>O<sub>3</sub> incorporation, indicating improved chemical reactivity and potential in energy storage systems. X-ray diffraction (XRD) confirmed a transition from amorphous to semi-crystalline structures, maximized at 4 wt.% La<sub>2</sub>O<sub>3</sub>, while FT-IR spectra displayed characteristic peak shifts and bond formations evidencing strong RPET-La<sub>2</sub>O<sub>3</sub> interactions. Optical studies revealed a marked increase in the UV-region absorption coefficient (α) with increasing La<sub>2</sub>O<sub>3</sub> content, indicating enhanced photon-polymer interactions, while maintaining high transparency in the visible region. The direct optical band gap decreased from 3.98 eV (pristine RPET) to 3.77 eV at 8 wt.% loading, confirming matrix-filler interaction and tunability of optical properties. Dielectric analysis showed significant improvements in dielectric constant (ε′), dielectric loss (ε″), and AC conductivity (σ<sub>AC</sub>), with the 4 wt.% composite exhibiting the highest σ<sub>AC</sub> (1.12 × 10<sup>–5</sup> S·cm<sup>−1</sup> at 100 °C) and stable dielectric performance over a broad frequency range. Thermal analysis (TGA and DSC) confirmed enhanced thermal stability, with the 4 wt.% sample exhibiting a 12 °C increase in onset decomposition temperature and altered melting profiles, indicating strong interfacial bonding and the formation of thermally resistant phases. These findings identify 4 wt.% La<sub>2</sub>O<sub>3</sub> as the optimal loading, offering a balanced improvement in optical absorption, dielectric stability, conductivity, and thermal resistance, thereby establishing La<sub>2</sub>O<sub>3</sub>-RPET nanocomposites as promising candidates for UV-shielding, dielectric, and thermally stable conductive materials for electronic and energy applications.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 27\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-15875-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-15875-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告了氧化镧(La2O3)纳米颗粒在负载1、2、4和8 wt.%时对再生聚对苯二甲酸乙二醇酯(RPET)的功能化,以增强其物理化学、光学、介电和热性能,用于先进材料的应用。分子静电势(MESP)分析表明,La2O3的加入增强了电荷再分配和电负性,表明储能系统的化学反应性和电势得到改善。x射线衍射(XRD)证实了从非晶到半晶结构的转变,在La2O3含量为4 wt.%时达到最大,而FT-IR光谱显示出特征峰移和键形成,表明RPET-La2O3之间存在强烈的相互作用。光学研究表明,随着La2O3含量的增加,紫外区吸收系数(α)显著增加,表明光子与聚合物的相互作用增强,同时在可见光区保持高透明度。在8 wt.%负载下,直接光学带隙从3.98 eV(原始RPET)减小到3.77 eV,证实了基质-填料的相互作用和光学性质的可调性。电介质分析结果表明,复合材料的介电常数(ε′)、介电损耗(ε″)和交流电导率(σAC)均有显著改善,其中4 wt.%的复合材料的σAC最高(100℃时为1.12 × 10-5 S·cm−1),且在较宽的频率范围内具有稳定的介电性能。热分析(TGA和DSC)证实了增强的热稳定性,4 wt.%的样品显示起分解温度提高了12°C,熔化曲线发生了变化,表明界面结合强,形成了耐热相。这些发现确定了4 wt.%的La2O3为最佳负载,在光吸收、介电稳定性、电导率和热阻方面提供了平衡的改进,从而使La2O3- rpet纳米复合材料成为电子和能源应用中紫外线屏蔽、介电和热稳定导电材料的有希望的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring bandgap and dielectric properties of RPET using lanthanum oxide nanofillers for UV-shielding and optoelectronic applications

This study reports the functionalization of recycled polyethylene terephthalate (RPET) with lanthanum oxide (La2O3) nanoparticles at loadings of 1, 2, 4, and 8 wt.% to enhance its physicochemical, optical, dielectric, and thermal properties for advanced material applications. Molecular electrostatic potential (MESP) analysis revealed enhanced charge redistribution and increased electronegativity with La2O3 incorporation, indicating improved chemical reactivity and potential in energy storage systems. X-ray diffraction (XRD) confirmed a transition from amorphous to semi-crystalline structures, maximized at 4 wt.% La2O3, while FT-IR spectra displayed characteristic peak shifts and bond formations evidencing strong RPET-La2O3 interactions. Optical studies revealed a marked increase in the UV-region absorption coefficient (α) with increasing La2O3 content, indicating enhanced photon-polymer interactions, while maintaining high transparency in the visible region. The direct optical band gap decreased from 3.98 eV (pristine RPET) to 3.77 eV at 8 wt.% loading, confirming matrix-filler interaction and tunability of optical properties. Dielectric analysis showed significant improvements in dielectric constant (ε′), dielectric loss (ε″), and AC conductivity (σAC), with the 4 wt.% composite exhibiting the highest σAC (1.12 × 10–5 S·cm−1 at 100 °C) and stable dielectric performance over a broad frequency range. Thermal analysis (TGA and DSC) confirmed enhanced thermal stability, with the 4 wt.% sample exhibiting a 12 °C increase in onset decomposition temperature and altered melting profiles, indicating strong interfacial bonding and the formation of thermally resistant phases. These findings identify 4 wt.% La2O3 as the optimal loading, offering a balanced improvement in optical absorption, dielectric stability, conductivity, and thermal resistance, thereby establishing La2O3-RPET nanocomposites as promising candidates for UV-shielding, dielectric, and thermally stable conductive materials for electronic and energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信