森林残留物的能量回收:朗肯循环的热力学模型

IF 3 3区 工程技术 Q3 ENERGY & FUELS
Gilvana Scoculi de Lira, Ihana A. Severo, Henrique P. Guerra, Fernando A. Ferraz, Lauber S. Martins, Juan C. Ordonez, José V. C. Vargas, Dhyogo M. Taher, André B. Mariano
{"title":"森林残留物的能量回收:朗肯循环的热力学模型","authors":"Gilvana Scoculi de Lira,&nbsp;Ihana A. Severo,&nbsp;Henrique P. Guerra,&nbsp;Fernando A. Ferraz,&nbsp;Lauber S. Martins,&nbsp;Juan C. Ordonez,&nbsp;José V. C. Vargas,&nbsp;Dhyogo M. Taher,&nbsp;André B. Mariano","doi":"10.1007/s12155-025-10900-5","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demand for sustainable energy solutions has intensified interest in lignocellulosic biomass as a renewable alternative to fossil fuels. This study assesses the bioenergy potential from maintenance activities on a university campus in southern Brazil, typically underutilized resource for energy recovery. Residues, though poorly managed, present a viable pathway for waste valorization and renewable energy generation. A comprehensive physicochemical characterization was conducted through proximate and ultimate analyses, along with moisture content and higher heating value (HHV) determination. Biomass characterization recorded fixed carbon (20.14–22.45%), volatile matter (76.02–77.95%), ash content (1.56–2.39%), and calorific values (18.63–19.59 MJ/kg). The ultimate analysis recorded carbon (46.10–48.79%), hydrogen (5.96–6.35%), oxygen (44.30–47.14%), and nitrogen (0.32–0.79%). To evaluate its energy recovery potential, a steady-state thermodynamic model simulated the combustion of 50 kg/h lignocellulosic biomass in an incineration system coupled with a Rankine cycle power plant, achieving a peak output of 63.32 kW. The novelty lies in modeling the energy recovery potential of a highly heterogeneous biomass stream, derived from non-industrial forest maintenance, an area scarcely explored in the literature. This research provides valuable data and modeling insights to guide energy systems design using low-grade, heterogeneous biomass fuels. Additionally, the study demonstrates how targeted heat exchanger optimization in the Rankine cycle can improve overall efficiency. The findings advance waste-to-energy strategies and open opportunities for future research in scaling up this approach to regions and types of biomass waste.\n</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Recovery from Forest Residues: Thermodynamic Modeling of a Rankine Cycle\",\"authors\":\"Gilvana Scoculi de Lira,&nbsp;Ihana A. Severo,&nbsp;Henrique P. Guerra,&nbsp;Fernando A. Ferraz,&nbsp;Lauber S. Martins,&nbsp;Juan C. Ordonez,&nbsp;José V. C. Vargas,&nbsp;Dhyogo M. Taher,&nbsp;André B. Mariano\",\"doi\":\"10.1007/s12155-025-10900-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing demand for sustainable energy solutions has intensified interest in lignocellulosic biomass as a renewable alternative to fossil fuels. This study assesses the bioenergy potential from maintenance activities on a university campus in southern Brazil, typically underutilized resource for energy recovery. Residues, though poorly managed, present a viable pathway for waste valorization and renewable energy generation. A comprehensive physicochemical characterization was conducted through proximate and ultimate analyses, along with moisture content and higher heating value (HHV) determination. Biomass characterization recorded fixed carbon (20.14–22.45%), volatile matter (76.02–77.95%), ash content (1.56–2.39%), and calorific values (18.63–19.59 MJ/kg). The ultimate analysis recorded carbon (46.10–48.79%), hydrogen (5.96–6.35%), oxygen (44.30–47.14%), and nitrogen (0.32–0.79%). To evaluate its energy recovery potential, a steady-state thermodynamic model simulated the combustion of 50 kg/h lignocellulosic biomass in an incineration system coupled with a Rankine cycle power plant, achieving a peak output of 63.32 kW. The novelty lies in modeling the energy recovery potential of a highly heterogeneous biomass stream, derived from non-industrial forest maintenance, an area scarcely explored in the literature. This research provides valuable data and modeling insights to guide energy systems design using low-grade, heterogeneous biomass fuels. Additionally, the study demonstrates how targeted heat exchanger optimization in the Rankine cycle can improve overall efficiency. The findings advance waste-to-energy strategies and open opportunities for future research in scaling up this approach to regions and types of biomass waste.\\n</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-025-10900-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-025-10900-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

对可持续能源解决方案日益增长的需求增强了人们对木质纤维素生物质作为化石燃料的可再生替代品的兴趣。本研究评估了巴西南部一所大学校园维护活动的生物能源潜力,这是一种典型的未充分利用的能源回收资源。残留物虽然管理不善,但为废物增值和产生可再生能源提供了一条可行的途径。通过近似分析和终极分析,以及水分含量和高热值(HHV)测定,进行了全面的理化表征。生物质表征记录了固定碳(20.14-22.45%)、挥发物(76.02-77.95%)、灰分(1.56-2.39%)和发热量(18.63-19.59 MJ/kg)。最终分析记录了碳(46.10-48.79%)、氢(5.96-6.35%)、氧(44.30-47.14%)和氮(0.32-0.79%)。为了评估其能量回收潜力,稳态热力学模型模拟了50 kg/h木质纤维素生物质在与兰肯循环发电厂耦合的焚烧系统中的燃烧,达到了63.32 kW的峰值输出。新颖之处在于模拟高度异质性的生物质流的能量恢复潜力,来源于非工业森林维护,这是一个文献中很少探索的领域。这项研究提供了有价值的数据和建模见解,指导能源系统设计使用低品位,异质生物质燃料。此外,该研究还证明了郎金循环中有针对性的热交换器优化如何提高整体效率。这些发现推进了废物转化为能源的战略,并为今后的研究开辟了机会,将这种方法扩大到不同地区和不同类型的生物质废物。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Recovery from Forest Residues: Thermodynamic Modeling of a Rankine Cycle

The increasing demand for sustainable energy solutions has intensified interest in lignocellulosic biomass as a renewable alternative to fossil fuels. This study assesses the bioenergy potential from maintenance activities on a university campus in southern Brazil, typically underutilized resource for energy recovery. Residues, though poorly managed, present a viable pathway for waste valorization and renewable energy generation. A comprehensive physicochemical characterization was conducted through proximate and ultimate analyses, along with moisture content and higher heating value (HHV) determination. Biomass characterization recorded fixed carbon (20.14–22.45%), volatile matter (76.02–77.95%), ash content (1.56–2.39%), and calorific values (18.63–19.59 MJ/kg). The ultimate analysis recorded carbon (46.10–48.79%), hydrogen (5.96–6.35%), oxygen (44.30–47.14%), and nitrogen (0.32–0.79%). To evaluate its energy recovery potential, a steady-state thermodynamic model simulated the combustion of 50 kg/h lignocellulosic biomass in an incineration system coupled with a Rankine cycle power plant, achieving a peak output of 63.32 kW. The novelty lies in modeling the energy recovery potential of a highly heterogeneous biomass stream, derived from non-industrial forest maintenance, an area scarcely explored in the literature. This research provides valuable data and modeling insights to guide energy systems design using low-grade, heterogeneous biomass fuels. Additionally, the study demonstrates how targeted heat exchanger optimization in the Rankine cycle can improve overall efficiency. The findings advance waste-to-energy strategies and open opportunities for future research in scaling up this approach to regions and types of biomass waste.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信