常关三角形氮化镓纳米线包栅晶体管的温度依赖性电学特性

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ki-Sik Im, Peddathimula Puneetha, Yeo Jin Choi, Manal Zafar, Chanyeong Park, Seunghwan Jang, Dong Yeon Lee, Sung Jin An, Siva Pratap Reddy Mallem
{"title":"常关三角形氮化镓纳米线包栅晶体管的温度依赖性电学特性","authors":"Ki-Sik Im,&nbsp;Peddathimula Puneetha,&nbsp;Yeo Jin Choi,&nbsp;Manal Zafar,&nbsp;Chanyeong Park,&nbsp;Seunghwan Jang,&nbsp;Dong Yeon Lee,&nbsp;Sung Jin An,&nbsp;Siva Pratap Reddy Mallem","doi":"10.1007/s10854-025-15856-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a detailed experimental investigation of temperature-dependent electrical properties of normally-off horizontally aligned triangular-shaped gallium nitride (GaN) nanowire wrap-gate transistor in the temperature range of 100–300 K in steps of 50 K. By employing advanced nanofabrication techniques and state-of-the-art measurement protocols, the temperature-dependent electrical characteristics including drain current (I<sub>ds</sub>) versus gate voltage (V<sub>gs</sub>) and transconductance(g<sub>m</sub>) versus gate voltage (V<sub>gs</sub>) have been systematically evaluated. It is observed that the experimental values of drain current increase with increasing temperature for lower bias regimes (i.e., V<sub>gs</sub> &lt; 2 V) , whereas drain current decreases with increasing temperature for higher bias regimes (i.e., V<sub>gs</sub> &gt; 2 V). Our results not only elucidate the interplay between temperature-dependent characteristics and normally-off characteristics in horizontally aligned triangular-shaped GaN nanowires but also provide a robust framework for future design strategies aimed at optimizing high-performance semiconductor devices in extreme miniaturization regimes.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 27","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent electrical characteristics of normally-off triangular-shaped GaN nanowire wrap-gate transistors\",\"authors\":\"Ki-Sik Im,&nbsp;Peddathimula Puneetha,&nbsp;Yeo Jin Choi,&nbsp;Manal Zafar,&nbsp;Chanyeong Park,&nbsp;Seunghwan Jang,&nbsp;Dong Yeon Lee,&nbsp;Sung Jin An,&nbsp;Siva Pratap Reddy Mallem\",\"doi\":\"10.1007/s10854-025-15856-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a detailed experimental investigation of temperature-dependent electrical properties of normally-off horizontally aligned triangular-shaped gallium nitride (GaN) nanowire wrap-gate transistor in the temperature range of 100–300 K in steps of 50 K. By employing advanced nanofabrication techniques and state-of-the-art measurement protocols, the temperature-dependent electrical characteristics including drain current (I<sub>ds</sub>) versus gate voltage (V<sub>gs</sub>) and transconductance(g<sub>m</sub>) versus gate voltage (V<sub>gs</sub>) have been systematically evaluated. It is observed that the experimental values of drain current increase with increasing temperature for lower bias regimes (i.e., V<sub>gs</sub> &lt; 2 V) , whereas drain current decreases with increasing temperature for higher bias regimes (i.e., V<sub>gs</sub> &gt; 2 V). Our results not only elucidate the interplay between temperature-dependent characteristics and normally-off characteristics in horizontally aligned triangular-shaped GaN nanowires but also provide a robust framework for future design strategies aimed at optimizing high-performance semiconductor devices in extreme miniaturization regimes.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 27\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-15856-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-15856-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究对正常关闭水平排列三角形氮化镓(GaN)纳米线包裹栅晶体管在100-300 K温度范围内的电学特性进行了详细的实验研究,步骤为50 K。通过采用先进的纳米制造技术和最先进的测量方案,系统地评估了温度相关的电特性,包括漏极电流(Ids)与栅极电压(Vgs)和跨导(gm)与栅极电压(Vgs)。我们观察到,在低偏置条件下(即Vgs <; 2v),漏极电流的实验值随温度升高而增大,而在高偏置条件下(即Vgs >; 2v),漏极电流随温度升高而减小。我们的研究结果不仅阐明了水平排列的三角形GaN纳米线的温度依赖特性和正常关闭特性之间的相互作用,而且还为未来的设计策略提供了一个强大的框架,旨在优化极端小型化制度下的高性能半导体器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-dependent electrical characteristics of normally-off triangular-shaped GaN nanowire wrap-gate transistors

This study presents a detailed experimental investigation of temperature-dependent electrical properties of normally-off horizontally aligned triangular-shaped gallium nitride (GaN) nanowire wrap-gate transistor in the temperature range of 100–300 K in steps of 50 K. By employing advanced nanofabrication techniques and state-of-the-art measurement protocols, the temperature-dependent electrical characteristics including drain current (Ids) versus gate voltage (Vgs) and transconductance(gm) versus gate voltage (Vgs) have been systematically evaluated. It is observed that the experimental values of drain current increase with increasing temperature for lower bias regimes (i.e., Vgs < 2 V) , whereas drain current decreases with increasing temperature for higher bias regimes (i.e., Vgs > 2 V). Our results not only elucidate the interplay between temperature-dependent characteristics and normally-off characteristics in horizontally aligned triangular-shaped GaN nanowires but also provide a robust framework for future design strategies aimed at optimizing high-performance semiconductor devices in extreme miniaturization regimes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信