Xu Zhang, Li Yang, Guanglong Zhang, Jiangtao Wang, Xiangyang Liu, Ningfei Wang
{"title":"基于热老化机理的复合推进剂累积损伤修正模型","authors":"Xu Zhang, Li Yang, Guanglong Zhang, Jiangtao Wang, Xiangyang Liu, Ningfei Wang","doi":"10.1007/s11043-025-09828-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a modified cumulative damage model for GAP-based composite solid propellants, considering thermal aging effects. Accelerated thermal aging experiments were conducted at 333.15 and 343.15 K to analyse the variations in mechanical properties, including elastic modulus and maximum elongation. The results revealed an approximately 15% increase in elastic modulus and an approximately 25% decrease in maximum elongation during 333.15 K thermal aging. Based on the Arrhenius equation, a predictive model for mechanical parameter degradation was established, and the evolution of cumulative damage parameters was simplified using three assumptions. The modified model, accounting for aging effects on parameter <span>\\(\\beta \\)</span>, demonstrated good agreement with direct computational results. Numerical simulations indicated that aging substantially amplifies cumulative damage in solid rocket motors under thermal cycling loads. This research provides a theoretical framework for assessing the structural integrity of solid rocket motor during long-term storage.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified cumulative damage model of composite propellants based on thermal aging mechanisms\",\"authors\":\"Xu Zhang, Li Yang, Guanglong Zhang, Jiangtao Wang, Xiangyang Liu, Ningfei Wang\",\"doi\":\"10.1007/s11043-025-09828-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a modified cumulative damage model for GAP-based composite solid propellants, considering thermal aging effects. Accelerated thermal aging experiments were conducted at 333.15 and 343.15 K to analyse the variations in mechanical properties, including elastic modulus and maximum elongation. The results revealed an approximately 15% increase in elastic modulus and an approximately 25% decrease in maximum elongation during 333.15 K thermal aging. Based on the Arrhenius equation, a predictive model for mechanical parameter degradation was established, and the evolution of cumulative damage parameters was simplified using three assumptions. The modified model, accounting for aging effects on parameter <span>\\\\(\\\\beta \\\\)</span>, demonstrated good agreement with direct computational results. Numerical simulations indicated that aging substantially amplifies cumulative damage in solid rocket motors under thermal cycling loads. This research provides a theoretical framework for assessing the structural integrity of solid rocket motor during long-term storage.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-025-09828-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09828-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种考虑热老化效应的改进的gap基复合固体推进剂累积损伤模型。在333.15 K和343.15 K下进行加速热老化实验,分析其力学性能的变化,包括弹性模量和最大伸长率。结果显示大约有15% increase in elastic modulus and an approximately 25% decrease in maximum elongation during 333.15 K thermal aging. Based on the Arrhenius equation, a predictive model for mechanical parameter degradation was established, and the evolution of cumulative damage parameters was simplified using three assumptions. The modified model, accounting for aging effects on parameter \(\beta \), demonstrated good agreement with direct computational results. Numerical simulations indicated that aging substantially amplifies cumulative damage in solid rocket motors under thermal cycling loads. This research provides a theoretical framework for assessing the structural integrity of solid rocket motor during long-term storage.
Modified cumulative damage model of composite propellants based on thermal aging mechanisms
This study proposes a modified cumulative damage model for GAP-based composite solid propellants, considering thermal aging effects. Accelerated thermal aging experiments were conducted at 333.15 and 343.15 K to analyse the variations in mechanical properties, including elastic modulus and maximum elongation. The results revealed an approximately 15% increase in elastic modulus and an approximately 25% decrease in maximum elongation during 333.15 K thermal aging. Based on the Arrhenius equation, a predictive model for mechanical parameter degradation was established, and the evolution of cumulative damage parameters was simplified using three assumptions. The modified model, accounting for aging effects on parameter \(\beta \), demonstrated good agreement with direct computational results. Numerical simulations indicated that aging substantially amplifies cumulative damage in solid rocket motors under thermal cycling loads. This research provides a theoretical framework for assessing the structural integrity of solid rocket motor during long-term storage.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.