{"title":"含有煅烧膨润土和再生玻璃粉的可持续自密实砂浆:随时间变化的机械和耐久性性能评估","authors":"Moulay Driss Berkani, Benchaa Benabed, Omar Taleb, Younes Ouldkhaoua, Zine el abidine Laidani, Mohamed Sahraoui, Rajab Abousnina","doi":"10.1007/s11043-025-09829-1","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the growing demand for sustainable construction practices, this study evaluates the potential use of calcined bentonite (CB) and recycled glass powder (GP) as supplementary cementitious materials in self-compacting mortar (SCM). The environmental objective is to reduce the reliance on Portland cement, which is a major contributor to CO<sub>2</sub> emissions, by incorporating industrial and post-consumer waste materials. In mixtures, CB was introduced at replacement levels of 5, 10, 15, and 20%, while GP was added at levels ranging from 5 to 25% by weight in binary and ternary binders. A comprehensive assessment of the fresh properties, including mini-slump flow, V-funnel flow time, yield stress, and plastic viscosity, was conducted, alongside mechanical and durability tests such as compressive strength, water absorption, acid resistance (5% HCl) and sulfate attack (5% K<sub>2</sub>SO<sub>4</sub>). Results indicate that, CB decreases the flowability of SCM mixtures, necessitating a higher dosage of superplasticiser. However, when combined with GP, the flowability improves significantly, reducing the demand for superplasticiser. Optimal mechanical performance was observed in mixtures containing 15% CB and 0% GP, as well as 10% CB with 5% GP, which achieved compressive strength improvements of 12% and 13%, respectively, after 90 days. Moreover, the incorporation of higher GP contents (15–25%) enhanced the mortar’s resistance to hydrochloric acid and potassium sulfate solution, highlighting its contribution to long-term durability. These findings support the valorization of calcined clays and glass waste as viable alternatives for developing sustainable and cost-effective SCM, while reducing environmental impact in the construction industry.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable self-compacting mortars incorporating calcined bentonite and recycled glass powder: time-dependent mechanical and durability performance assessment\",\"authors\":\"Moulay Driss Berkani, Benchaa Benabed, Omar Taleb, Younes Ouldkhaoua, Zine el abidine Laidani, Mohamed Sahraoui, Rajab Abousnina\",\"doi\":\"10.1007/s11043-025-09829-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the growing demand for sustainable construction practices, this study evaluates the potential use of calcined bentonite (CB) and recycled glass powder (GP) as supplementary cementitious materials in self-compacting mortar (SCM). The environmental objective is to reduce the reliance on Portland cement, which is a major contributor to CO<sub>2</sub> emissions, by incorporating industrial and post-consumer waste materials. In mixtures, CB was introduced at replacement levels of 5, 10, 15, and 20%, while GP was added at levels ranging from 5 to 25% by weight in binary and ternary binders. A comprehensive assessment of the fresh properties, including mini-slump flow, V-funnel flow time, yield stress, and plastic viscosity, was conducted, alongside mechanical and durability tests such as compressive strength, water absorption, acid resistance (5% HCl) and sulfate attack (5% K<sub>2</sub>SO<sub>4</sub>). Results indicate that, CB decreases the flowability of SCM mixtures, necessitating a higher dosage of superplasticiser. However, when combined with GP, the flowability improves significantly, reducing the demand for superplasticiser. Optimal mechanical performance was observed in mixtures containing 15% CB and 0% GP, as well as 10% CB with 5% GP, which achieved compressive strength improvements of 12% and 13%, respectively, after 90 days. Moreover, the incorporation of higher GP contents (15–25%) enhanced the mortar’s resistance to hydrochloric acid and potassium sulfate solution, highlighting its contribution to long-term durability. These findings support the valorization of calcined clays and glass waste as viable alternatives for developing sustainable and cost-effective SCM, while reducing environmental impact in the construction industry.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-025-09829-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-025-09829-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Sustainable self-compacting mortars incorporating calcined bentonite and recycled glass powder: time-dependent mechanical and durability performance assessment
In response to the growing demand for sustainable construction practices, this study evaluates the potential use of calcined bentonite (CB) and recycled glass powder (GP) as supplementary cementitious materials in self-compacting mortar (SCM). The environmental objective is to reduce the reliance on Portland cement, which is a major contributor to CO2 emissions, by incorporating industrial and post-consumer waste materials. In mixtures, CB was introduced at replacement levels of 5, 10, 15, and 20%, while GP was added at levels ranging from 5 to 25% by weight in binary and ternary binders. A comprehensive assessment of the fresh properties, including mini-slump flow, V-funnel flow time, yield stress, and plastic viscosity, was conducted, alongside mechanical and durability tests such as compressive strength, water absorption, acid resistance (5% HCl) and sulfate attack (5% K2SO4). Results indicate that, CB decreases the flowability of SCM mixtures, necessitating a higher dosage of superplasticiser. However, when combined with GP, the flowability improves significantly, reducing the demand for superplasticiser. Optimal mechanical performance was observed in mixtures containing 15% CB and 0% GP, as well as 10% CB with 5% GP, which achieved compressive strength improvements of 12% and 13%, respectively, after 90 days. Moreover, the incorporation of higher GP contents (15–25%) enhanced the mortar’s resistance to hydrochloric acid and potassium sulfate solution, highlighting its contribution to long-term durability. These findings support the valorization of calcined clays and glass waste as viable alternatives for developing sustainable and cost-effective SCM, while reducing environmental impact in the construction industry.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.