Irina V. Safenkova, Maria V. Kamionskaya, Aleksandr V. Ivanov, Anatoly V. Zherdev, Boris B. Dzantiev
{"title":"改进CRISPR/Cas12a检测的新型三脚架探针和横向流动测试:基于三倍乐磷酰胺修饰的分支探针的优势","authors":"Irina V. Safenkova, Maria V. Kamionskaya, Aleksandr V. Ivanov, Anatoly V. Zherdev, Boris B. Dzantiev","doi":"10.1007/s00604-025-07495-1","DOIUrl":null,"url":null,"abstract":"<div><p>CRISPR/Cas12a-based assays, when integrated with lateral flow tests (LFTs), provide highly specific nucleic acid detection in a simple, rapid, and equipment-free format. Nevertheless, traditional DNA probes utilized for cleavage by Cas12a have limitations as the cleaved probe only has one label. To overcome this challenge, we engineered a novel type of DNA probe with multiple fluorescein (FAM) labels and a biotin-labeled single-stranded DNA fragment (polyFAM probe). The cleaved polyFAM parts of the probes were detected using a specially designed sandwich LFT, where FAM-specific antibodies were immobilized in the test zone and conjugated with gold nanoparticles. The LFT ensured accurate recognition of the cleaved polyFAM fragments within 10 min. A comparison of five distinct polyFAM probes revealed that the highest signal-to-noise ratio was achieved with a tripod-branched probe synthesized via trebler phosphoramidite modification. Each arm of the tripod probe consists of a hexaethylene glycol spacer ending in a FAM label. Upon Cas12a cleavage, the tripod structure carrying three FAMs is released and detected by LFT. A rapid magnetic separation strategy was subsequently implemented, facilitating the efficient removal of uncleaved probes via biotin–streptavidin capture within 5 min. The CRISPR/Cas12a–tripod–LFT strategy demonstrated excellent sensitivity without preamplification, with a detection Limit of 1.4 pM for DNA target of <i>Salmonella </i>Typhimurium. The CRISPR/Cas12a-tripod-LFT with preliminary loop-mediated isothermal amplification enabled the detection of as few as 0.3 cells per reaction. This innovative tripod probe with corresponding LFT creates a universal, sensitive, rapid, and equipment-free biosensing platform for CRISPR/Cas12a-based diagnostics in point-of-care applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel tripod probe and lateral flow test to improve CRISPR/Cas12a assay: benefits of branched probe based on trebler phosphoramidite modification\",\"authors\":\"Irina V. Safenkova, Maria V. Kamionskaya, Aleksandr V. Ivanov, Anatoly V. Zherdev, Boris B. Dzantiev\",\"doi\":\"10.1007/s00604-025-07495-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CRISPR/Cas12a-based assays, when integrated with lateral flow tests (LFTs), provide highly specific nucleic acid detection in a simple, rapid, and equipment-free format. Nevertheless, traditional DNA probes utilized for cleavage by Cas12a have limitations as the cleaved probe only has one label. To overcome this challenge, we engineered a novel type of DNA probe with multiple fluorescein (FAM) labels and a biotin-labeled single-stranded DNA fragment (polyFAM probe). The cleaved polyFAM parts of the probes were detected using a specially designed sandwich LFT, where FAM-specific antibodies were immobilized in the test zone and conjugated with gold nanoparticles. The LFT ensured accurate recognition of the cleaved polyFAM fragments within 10 min. A comparison of five distinct polyFAM probes revealed that the highest signal-to-noise ratio was achieved with a tripod-branched probe synthesized via trebler phosphoramidite modification. Each arm of the tripod probe consists of a hexaethylene glycol spacer ending in a FAM label. Upon Cas12a cleavage, the tripod structure carrying three FAMs is released and detected by LFT. A rapid magnetic separation strategy was subsequently implemented, facilitating the efficient removal of uncleaved probes via biotin–streptavidin capture within 5 min. The CRISPR/Cas12a–tripod–LFT strategy demonstrated excellent sensitivity without preamplification, with a detection Limit of 1.4 pM for DNA target of <i>Salmonella </i>Typhimurium. The CRISPR/Cas12a-tripod-LFT with preliminary loop-mediated isothermal amplification enabled the detection of as few as 0.3 cells per reaction. This innovative tripod probe with corresponding LFT creates a universal, sensitive, rapid, and equipment-free biosensing platform for CRISPR/Cas12a-based diagnostics in point-of-care applications.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 11\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07495-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07495-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A novel tripod probe and lateral flow test to improve CRISPR/Cas12a assay: benefits of branched probe based on trebler phosphoramidite modification
CRISPR/Cas12a-based assays, when integrated with lateral flow tests (LFTs), provide highly specific nucleic acid detection in a simple, rapid, and equipment-free format. Nevertheless, traditional DNA probes utilized for cleavage by Cas12a have limitations as the cleaved probe only has one label. To overcome this challenge, we engineered a novel type of DNA probe with multiple fluorescein (FAM) labels and a biotin-labeled single-stranded DNA fragment (polyFAM probe). The cleaved polyFAM parts of the probes were detected using a specially designed sandwich LFT, where FAM-specific antibodies were immobilized in the test zone and conjugated with gold nanoparticles. The LFT ensured accurate recognition of the cleaved polyFAM fragments within 10 min. A comparison of five distinct polyFAM probes revealed that the highest signal-to-noise ratio was achieved with a tripod-branched probe synthesized via trebler phosphoramidite modification. Each arm of the tripod probe consists of a hexaethylene glycol spacer ending in a FAM label. Upon Cas12a cleavage, the tripod structure carrying three FAMs is released and detected by LFT. A rapid magnetic separation strategy was subsequently implemented, facilitating the efficient removal of uncleaved probes via biotin–streptavidin capture within 5 min. The CRISPR/Cas12a–tripod–LFT strategy demonstrated excellent sensitivity without preamplification, with a detection Limit of 1.4 pM for DNA target of Salmonella Typhimurium. The CRISPR/Cas12a-tripod-LFT with preliminary loop-mediated isothermal amplification enabled the detection of as few as 0.3 cells per reaction. This innovative tripod probe with corresponding LFT creates a universal, sensitive, rapid, and equipment-free biosensing platform for CRISPR/Cas12a-based diagnostics in point-of-care applications.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.