{"title":"骰子晶格的\\(A_{\\alpha }\\) -光谱和\\(A_{\\alpha }\\) -能量","authors":"Xiaxia Zhang, Xiaoling Ma","doi":"10.1007/s10955-025-03523-9","DOIUrl":null,"url":null,"abstract":"<div><p>The dice lattice is a two-dimensional structure derived from hexagonal and triangular lattices, distinguished by its high degree of symmetry and distinctive physical properties. It holds significant relevance in the fields of mathematics, physics, and materials science, particularly in the investigation of topological phenomena and the dynamic behavior of low-dimensional systems. For a given graph <i>G</i>, let <i>A</i>(<i>G</i>), <i>D</i>(<i>G</i>), and <i>Q</i>(<i>G</i>) represent the adjacency matrix, degree matrix, and signless Laplacian matrix of <i>G</i>, respectively. We define </p><div><div><span>$$\\begin{aligned}A_{\\alpha }(G) = \\alpha D(G) + (1 - \\alpha )A(G), \\text{ for } \\text{ any } \\text{ real } \\text{ value } \\alpha \\in [0, 1].\\end{aligned}$$</span></div></div><p>In this paper, we determine the <span>\\(A_{\\alpha }\\)</span>-spectrum and <span>\\(A_{\\alpha }\\)</span>-energy of the dice lattice under toroidal boundary conditions. Furthermore, we utilize these findings to derive the <i>A</i>-spectrum, <i>Q</i>-spectrum, <i>A</i>-energy, and <i>Q</i>-energy of the dice lattice with the same boundary conditions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\\\(A_{\\\\alpha }\\\\)-Spectrum and \\\\(A_{\\\\alpha }\\\\)-Energy of the Dice Lattice\",\"authors\":\"Xiaxia Zhang, Xiaoling Ma\",\"doi\":\"10.1007/s10955-025-03523-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dice lattice is a two-dimensional structure derived from hexagonal and triangular lattices, distinguished by its high degree of symmetry and distinctive physical properties. It holds significant relevance in the fields of mathematics, physics, and materials science, particularly in the investigation of topological phenomena and the dynamic behavior of low-dimensional systems. For a given graph <i>G</i>, let <i>A</i>(<i>G</i>), <i>D</i>(<i>G</i>), and <i>Q</i>(<i>G</i>) represent the adjacency matrix, degree matrix, and signless Laplacian matrix of <i>G</i>, respectively. We define </p><div><div><span>$$\\\\begin{aligned}A_{\\\\alpha }(G) = \\\\alpha D(G) + (1 - \\\\alpha )A(G), \\\\text{ for } \\\\text{ any } \\\\text{ real } \\\\text{ value } \\\\alpha \\\\in [0, 1].\\\\end{aligned}$$</span></div></div><p>In this paper, we determine the <span>\\\\(A_{\\\\alpha }\\\\)</span>-spectrum and <span>\\\\(A_{\\\\alpha }\\\\)</span>-energy of the dice lattice under toroidal boundary conditions. Furthermore, we utilize these findings to derive the <i>A</i>-spectrum, <i>Q</i>-spectrum, <i>A</i>-energy, and <i>Q</i>-energy of the dice lattice with the same boundary conditions.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 10\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03523-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03523-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
骰子晶格是由六边形和三角形晶格衍生而来的二维结构,以其高度对称性和独特的物理性质而著称。它在数学、物理和材料科学领域具有重要的相关性,特别是在拓扑现象和低维系统的动态行为的研究方面。对于给定的图G,设a (G)、D(G)、Q(G)分别表示G的邻接矩阵、度矩阵和无符号拉普拉斯矩阵。我们定义 $$\begin{aligned}A_{\alpha }(G) = \alpha D(G) + (1 - \alpha )A(G), \text{ for } \text{ any } \text{ real } \text{ value } \alpha \in [0, 1].\end{aligned}$$在本文中,我们确定了 \(A_{\alpha }\)-频谱和 \(A_{\alpha }\)-环面边界条件下骰子晶格的能量。进一步,我们利用这些发现推导了具有相同边界条件的骰子晶格的a谱、q谱、a能量和q能量。
The \(A_{\alpha }\)-Spectrum and \(A_{\alpha }\)-Energy of the Dice Lattice
The dice lattice is a two-dimensional structure derived from hexagonal and triangular lattices, distinguished by its high degree of symmetry and distinctive physical properties. It holds significant relevance in the fields of mathematics, physics, and materials science, particularly in the investigation of topological phenomena and the dynamic behavior of low-dimensional systems. For a given graph G, let A(G), D(G), and Q(G) represent the adjacency matrix, degree matrix, and signless Laplacian matrix of G, respectively. We define
$$\begin{aligned}A_{\alpha }(G) = \alpha D(G) + (1 - \alpha )A(G), \text{ for } \text{ any } \text{ real } \text{ value } \alpha \in [0, 1].\end{aligned}$$
In this paper, we determine the \(A_{\alpha }\)-spectrum and \(A_{\alpha }\)-energy of the dice lattice under toroidal boundary conditions. Furthermore, we utilize these findings to derive the A-spectrum, Q-spectrum, A-energy, and Q-energy of the dice lattice with the same boundary conditions.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.