扩展修正Myrzakulov引力理论中的Wald熵 \(f(R, T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\)

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Davood Momeni, Ratbay Myrzakulov
{"title":"扩展修正Myrzakulov引力理论中的Wald熵 \\(f(R, T, Q, R_{\\mu \\nu }T^{\\mu \\nu }, R_{\\mu \\nu }Q^{\\mu \\nu }, \\dots )\\)","authors":"Davood Momeni,&nbsp;Ratbay Myrzakulov","doi":"10.1007/s10773-025-06143-x","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate black hole entropy in a broad class of modified gravity theories defined by generalized Lagrangians of the form <span>\\(\\mathcal {L} = \\alpha R + F(T, Q, R_{\\mu \\nu }T^{\\mu \\nu }, R_{\\mu \\nu }Q^{\\mu \\nu }, \\dots )\\)</span>, where <span>\\(R\\)</span>, <span>\\(T\\)</span>, and <span>\\(Q\\)</span> represent curvature, torsion, and non-metricity scalars. Using the vielbein formalism, we derive the Wald entropy for various subclasses of these models, extending the classical entropy formula to accommodate non-Riemannian geometry. Our focus is on how the additional geometric degrees of freedom modify the entropy expression. The analysis shows that such corrections arise systematically from the extended structure of the action and preserve diffeomorphism invariance. These results refine the theoretical framework for gravitational thermodynamics in extended geometry settings.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wald Entropy in Extended Modified Myrzakulov Gravity Theories: \\\\(f(R, T, Q, R_{\\\\mu \\\\nu }T^{\\\\mu \\\\nu }, R_{\\\\mu \\\\nu }Q^{\\\\mu \\\\nu }, \\\\dots )\\\\)\",\"authors\":\"Davood Momeni,&nbsp;Ratbay Myrzakulov\",\"doi\":\"10.1007/s10773-025-06143-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate black hole entropy in a broad class of modified gravity theories defined by generalized Lagrangians of the form <span>\\\\(\\\\mathcal {L} = \\\\alpha R + F(T, Q, R_{\\\\mu \\\\nu }T^{\\\\mu \\\\nu }, R_{\\\\mu \\\\nu }Q^{\\\\mu \\\\nu }, \\\\dots )\\\\)</span>, where <span>\\\\(R\\\\)</span>, <span>\\\\(T\\\\)</span>, and <span>\\\\(Q\\\\)</span> represent curvature, torsion, and non-metricity scalars. Using the vielbein formalism, we derive the Wald entropy for various subclasses of these models, extending the classical entropy formula to accommodate non-Riemannian geometry. Our focus is on how the additional geometric degrees of freedom modify the entropy expression. The analysis shows that such corrections arise systematically from the extended structure of the action and preserve diffeomorphism invariance. These results refine the theoretical framework for gravitational thermodynamics in extended geometry settings.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 10\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06143-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06143-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们在广义拉格朗日公式\(\mathcal {L} = \alpha R + F(T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\)定义的广义引力理论中研究黑洞熵,其中\(R\)、\(T\)和\(Q\)表示曲率、扭转和非度规标量。利用维耶尔拜因的形式,我们导出了这些模型的各个子类的沃尔德熵,扩展了经典熵公式以适应非黎曼几何。我们的重点是额外的几何自由度如何改变熵的表达式。分析表明,这种修正系统地产生于作用的扩展结构,并保持微分同构不变性。这些结果完善了扩展几何环境下引力热力学的理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wald Entropy in Extended Modified Myrzakulov Gravity Theories: \(f(R, T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\)

We investigate black hole entropy in a broad class of modified gravity theories defined by generalized Lagrangians of the form \(\mathcal {L} = \alpha R + F(T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\), where \(R\), \(T\), and \(Q\) represent curvature, torsion, and non-metricity scalars. Using the vielbein formalism, we derive the Wald entropy for various subclasses of these models, extending the classical entropy formula to accommodate non-Riemannian geometry. Our focus is on how the additional geometric degrees of freedom modify the entropy expression. The analysis shows that such corrections arise systematically from the extended structure of the action and preserve diffeomorphism invariance. These results refine the theoretical framework for gravitational thermodynamics in extended geometry settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信