{"title":"污泥中铜毒杆菌降解褐煤的机制","authors":"Yaya Wang, Weilong Cao, Tianyu Zhu, Jiaxuan Li, Damir Nussipov, Kuanysh Tastambek, Xiangrong Liu","doi":"10.1007/s10532-025-10191-9","DOIUrl":null,"url":null,"abstract":"<div><p>Lignite, a low-rank coal, is commonly utilized as a fuel source. However, its high sulfur and ash content can result in the release of harmful substances during combustion. Microbial coal degradation offers a more environmentally friendly alternative to traditional chemical and physical methods of coal treatment. In this study, we obtained a bacterium, named as <i>Cupriavidus sp</i> isolated from activated sludge that exhibits potential for lignite degradation. After identification via 16S rDNA sequencing, the degradation characteristics and mechanisms of strain S4 on lignite from Shanxi, were systematically evaluated. Extracellular enzyme activities of strain S4 were measured, revealing the secretion of lignin peroxidase, manganese peroxidase, laccase, alkaline protease, and amylase, indicating its capacity for multi-enzyme synergistic degradation. Scanning electron microscopy (SEM) observations confirmed that the bacterium could adsorb onto the coal surface. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated a significant increase in free hydroxyl groups on the coal, which facilitates degradation. Gas chromatography-mass spectrometry (GC–MS) and three-dimensional fluorescence spectroscopy analyses of the liquid-phase products showed a notable increase in long-chain alkanes and phenolic compounds in the degradation liquid, along with the detection of humic substances. Further studies indicated that strain S4 mediates initial adsorption through the secretion of extracellular polymers (EPS) rich in proteins and polysaccharides, highlighting the key mechanism of microbial-coal interface interaction. This study provides a theoretical foundation for the development of lignite bioremediation technologies and the resource-based application of functional bacterial strains.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanism underlying lignite biodegradation by Cupriavidus sp isolated from sludge\",\"authors\":\"Yaya Wang, Weilong Cao, Tianyu Zhu, Jiaxuan Li, Damir Nussipov, Kuanysh Tastambek, Xiangrong Liu\",\"doi\":\"10.1007/s10532-025-10191-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lignite, a low-rank coal, is commonly utilized as a fuel source. However, its high sulfur and ash content can result in the release of harmful substances during combustion. Microbial coal degradation offers a more environmentally friendly alternative to traditional chemical and physical methods of coal treatment. In this study, we obtained a bacterium, named as <i>Cupriavidus sp</i> isolated from activated sludge that exhibits potential for lignite degradation. After identification via 16S rDNA sequencing, the degradation characteristics and mechanisms of strain S4 on lignite from Shanxi, were systematically evaluated. Extracellular enzyme activities of strain S4 were measured, revealing the secretion of lignin peroxidase, manganese peroxidase, laccase, alkaline protease, and amylase, indicating its capacity for multi-enzyme synergistic degradation. Scanning electron microscopy (SEM) observations confirmed that the bacterium could adsorb onto the coal surface. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated a significant increase in free hydroxyl groups on the coal, which facilitates degradation. Gas chromatography-mass spectrometry (GC–MS) and three-dimensional fluorescence spectroscopy analyses of the liquid-phase products showed a notable increase in long-chain alkanes and phenolic compounds in the degradation liquid, along with the detection of humic substances. Further studies indicated that strain S4 mediates initial adsorption through the secretion of extracellular polymers (EPS) rich in proteins and polysaccharides, highlighting the key mechanism of microbial-coal interface interaction. This study provides a theoretical foundation for the development of lignite bioremediation technologies and the resource-based application of functional bacterial strains.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10191-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10191-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The mechanism underlying lignite biodegradation by Cupriavidus sp isolated from sludge
Lignite, a low-rank coal, is commonly utilized as a fuel source. However, its high sulfur and ash content can result in the release of harmful substances during combustion. Microbial coal degradation offers a more environmentally friendly alternative to traditional chemical and physical methods of coal treatment. In this study, we obtained a bacterium, named as Cupriavidus sp isolated from activated sludge that exhibits potential for lignite degradation. After identification via 16S rDNA sequencing, the degradation characteristics and mechanisms of strain S4 on lignite from Shanxi, were systematically evaluated. Extracellular enzyme activities of strain S4 were measured, revealing the secretion of lignin peroxidase, manganese peroxidase, laccase, alkaline protease, and amylase, indicating its capacity for multi-enzyme synergistic degradation. Scanning electron microscopy (SEM) observations confirmed that the bacterium could adsorb onto the coal surface. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated a significant increase in free hydroxyl groups on the coal, which facilitates degradation. Gas chromatography-mass spectrometry (GC–MS) and three-dimensional fluorescence spectroscopy analyses of the liquid-phase products showed a notable increase in long-chain alkanes and phenolic compounds in the degradation liquid, along with the detection of humic substances. Further studies indicated that strain S4 mediates initial adsorption through the secretion of extracellular polymers (EPS) rich in proteins and polysaccharides, highlighting the key mechanism of microbial-coal interface interaction. This study provides a theoretical foundation for the development of lignite bioremediation technologies and the resource-based application of functional bacterial strains.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.