提高n型WO2.72陶瓷的高温热电性能:通过微结构工程降低晶格导热系数

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tram Anh Huynh Ngoc, Thanh Ngoc Bao Phan, Quy Nguyen Ngoc Le, Nhat Quang Minh Tran
{"title":"提高n型WO2.72陶瓷的高温热电性能:通过微结构工程降低晶格导热系数","authors":"Tram Anh Huynh Ngoc,&nbsp;Thanh Ngoc Bao Phan,&nbsp;Quy Nguyen Ngoc Le,&nbsp;Nhat Quang Minh Tran","doi":"10.1007/s10854-025-15762-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a strategy to improve thermoelectric properties of substoichiometric pentagonal−columnar WO<sub>2.72</sub> oxides through microstructure engineering via the incorporation of Ta<sub>2</sub>O<sub>5</sub> inclusions as a secondary phase. A series of xTa<sub>2</sub>O<sub>5</sub>WO<sub>2.72</sub> oxides (x = 0–0.15) were synthesized via solid−state reaction in inert atmosphere. XRD and SEM analyses confirm the coexistence of Ta<sub>2</sub>O<sub>5</sub> segregations within the WO<sub>2.72</sub> crystal lattice structure without chemical reaction and reveal a nanorod−like grain morphology in the material. These structural modifications introduce significant phonon−scattering sites, reducing total thermal conductivity by half. Simultaneously, the Seebeck coefficient magnitude increases by 43% compared to the pristine phase, sufficient to compensate for the elevation in the resistivity caused by the introduction of the secondary−phase inclusions, thereby maintaining competitive power factors above 1000 K. A peak <b><i>zT</i></b> of 0.13 at 1073 K is achieved for x = 0.15, nearly tripling the figure of pristine materials. The results highlight the effectiveness of microstructure−driven strategies for decoupling thermal and electronic transport in oxide thermoelectric.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 28","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced high-temperature thermoelectric performance of the n-type WO2.72 Ceramics: reduced lattice thermal conductivity via microstructure engineering\",\"authors\":\"Tram Anh Huynh Ngoc,&nbsp;Thanh Ngoc Bao Phan,&nbsp;Quy Nguyen Ngoc Le,&nbsp;Nhat Quang Minh Tran\",\"doi\":\"10.1007/s10854-025-15762-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a strategy to improve thermoelectric properties of substoichiometric pentagonal−columnar WO<sub>2.72</sub> oxides through microstructure engineering via the incorporation of Ta<sub>2</sub>O<sub>5</sub> inclusions as a secondary phase. A series of xTa<sub>2</sub>O<sub>5</sub>WO<sub>2.72</sub> oxides (x = 0–0.15) were synthesized via solid−state reaction in inert atmosphere. XRD and SEM analyses confirm the coexistence of Ta<sub>2</sub>O<sub>5</sub> segregations within the WO<sub>2.72</sub> crystal lattice structure without chemical reaction and reveal a nanorod−like grain morphology in the material. These structural modifications introduce significant phonon−scattering sites, reducing total thermal conductivity by half. Simultaneously, the Seebeck coefficient magnitude increases by 43% compared to the pristine phase, sufficient to compensate for the elevation in the resistivity caused by the introduction of the secondary−phase inclusions, thereby maintaining competitive power factors above 1000 K. A peak <b><i>zT</i></b> of 0.13 at 1073 K is achieved for x = 0.15, nearly tripling the figure of pristine materials. The results highlight the effectiveness of microstructure−driven strategies for decoupling thermal and electronic transport in oxide thermoelectric.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 28\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-15762-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-15762-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种通过微观结构工程,通过加入Ta2O5夹杂物作为二次相,来改善亚化学计量的五方柱状WO2.72氧化物热电性能的策略。在惰性气氛中通过固相反应合成了一系列xTa2O5WO2.72氧化物(x = 0-0.15)。XRD和SEM分析证实,在WO2.72的晶格结构中存在Ta2O5偏析,没有发生化学反应,并在材料中显示出纳米棒状的晶粒形态。这些结构修改引入了重要的声子散射位点,使总导热系数降低了一半。同时,与原始相相比,塞贝克系数增加了43%,足以补偿二次相夹杂物的引入导致的电阻率升高,从而使竞争功率因数保持在1000 K以上。当x = 0.15时,在1073 K处zT峰值为0.13,几乎是原始材料的三倍。结果强调了微观结构驱动策略对氧化物热电中热电输运解耦的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced high-temperature thermoelectric performance of the n-type WO2.72 Ceramics: reduced lattice thermal conductivity via microstructure engineering

This study presents a strategy to improve thermoelectric properties of substoichiometric pentagonal−columnar WO2.72 oxides through microstructure engineering via the incorporation of Ta2O5 inclusions as a secondary phase. A series of xTa2O5WO2.72 oxides (x = 0–0.15) were synthesized via solid−state reaction in inert atmosphere. XRD and SEM analyses confirm the coexistence of Ta2O5 segregations within the WO2.72 crystal lattice structure without chemical reaction and reveal a nanorod−like grain morphology in the material. These structural modifications introduce significant phonon−scattering sites, reducing total thermal conductivity by half. Simultaneously, the Seebeck coefficient magnitude increases by 43% compared to the pristine phase, sufficient to compensate for the elevation in the resistivity caused by the introduction of the secondary−phase inclusions, thereby maintaining competitive power factors above 1000 K. A peak zT of 0.13 at 1073 K is achieved for x = 0.15, nearly tripling the figure of pristine materials. The results highlight the effectiveness of microstructure−driven strategies for decoupling thermal and electronic transport in oxide thermoelectric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信