利用低频噪声光谱研究高k介电双栅晶体管的离子开关动力学

IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Soi Jeong, Chang-Hyeon Han, Been Kwak, Ryun-Han Koo, Youngchan Cho, Jangsaeng Kim, Jong-Ho Lee, Daewoong Kwon, Wonjun Shin
{"title":"利用低频噪声光谱研究高k介电双栅晶体管的离子开关动力学","authors":"Soi Jeong,&nbsp;Chang-Hyeon Han,&nbsp;Been Kwak,&nbsp;Ryun-Han Koo,&nbsp;Youngchan Cho,&nbsp;Jangsaeng Kim,&nbsp;Jong-Ho Lee,&nbsp;Daewoong Kwon,&nbsp;Wonjun Shin","doi":"10.1186/s40580-025-00512-2","DOIUrl":null,"url":null,"abstract":"<p>High-k dielectric materials such as HfO<sub>2</sub> have garnered significant attention for their potential applications in advanced electronic devices due to their superior dielectric properties. Particularly, oxygen vacancies within these materials can be strategically utilized to implement memory functionalities. However, the precise analysis of the electrical, chemical, and electrochemical characteristics related to oxygen vacancies remains challenging. In this study, we fabricated a double-gate thin-film transistor (TFT) structure employing HfO<sub>2</sub> as the gate dielectric for both top and bottom gates, with the oxygen vacancy concentration intentionally modulated by introducing a TiO<sub>2</sub> interlayer at the bottom gate stack. This TiO<sub>2</sub> layer effectively increases the oxygen vacancy content within the bottom gate dielectric, facilitating oxygen vacancy migration-based memory operation primarily through the bottom gate. The resulting asymmetry between the top and bottom gates was systematically analyzed using low-frequency noise (LFN) characterization, elucidating for the first time the distinct impacts of oxygen vacancy modulation on device electrical behavior and operational mechanisms. This comprehensive LFN analysis provides critical insights into the fundamental dynamics of defect-mediated memory operation, highlighting the importance of dielectric engineering in optimizing next-generation oxide-based electronic devices.</p><p>This study unravels ionic switching dynamics in double-gate HfO2–IGZO TFTs, where a TiO2 scavenging layer modulates oxygen vacancies to enable memory operation. Low-frequency noise spectroscopy reveals a ionic-dependent transition between distinct noise mechanisms, providing fundamental insights into vacancy-driven dynamics and guiding the optimization of high-k dielectric transistors for next-generation computing.</p>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00512-2","citationCount":"0","resultStr":"{\"title\":\"Unraveling ionic switching dynamics in high-k dielectric double-gate transistors via low-frequency noise spectroscopy\",\"authors\":\"Soi Jeong,&nbsp;Chang-Hyeon Han,&nbsp;Been Kwak,&nbsp;Ryun-Han Koo,&nbsp;Youngchan Cho,&nbsp;Jangsaeng Kim,&nbsp;Jong-Ho Lee,&nbsp;Daewoong Kwon,&nbsp;Wonjun Shin\",\"doi\":\"10.1186/s40580-025-00512-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-k dielectric materials such as HfO<sub>2</sub> have garnered significant attention for their potential applications in advanced electronic devices due to their superior dielectric properties. Particularly, oxygen vacancies within these materials can be strategically utilized to implement memory functionalities. However, the precise analysis of the electrical, chemical, and electrochemical characteristics related to oxygen vacancies remains challenging. In this study, we fabricated a double-gate thin-film transistor (TFT) structure employing HfO<sub>2</sub> as the gate dielectric for both top and bottom gates, with the oxygen vacancy concentration intentionally modulated by introducing a TiO<sub>2</sub> interlayer at the bottom gate stack. This TiO<sub>2</sub> layer effectively increases the oxygen vacancy content within the bottom gate dielectric, facilitating oxygen vacancy migration-based memory operation primarily through the bottom gate. The resulting asymmetry between the top and bottom gates was systematically analyzed using low-frequency noise (LFN) characterization, elucidating for the first time the distinct impacts of oxygen vacancy modulation on device electrical behavior and operational mechanisms. This comprehensive LFN analysis provides critical insights into the fundamental dynamics of defect-mediated memory operation, highlighting the importance of dielectric engineering in optimizing next-generation oxide-based electronic devices.</p><p>This study unravels ionic switching dynamics in double-gate HfO2–IGZO TFTs, where a TiO2 scavenging layer modulates oxygen vacancies to enable memory operation. Low-frequency noise spectroscopy reveals a ionic-dependent transition between distinct noise mechanisms, providing fundamental insights into vacancy-driven dynamics and guiding the optimization of high-k dielectric transistors for next-generation computing.</p>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00512-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-025-00512-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-025-00512-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高k介电材料,如HfO2,由于其优越的介电性能,在先进电子器件中的潜在应用受到了极大的关注。特别是,这些材料中的氧空位可以策略性地利用来实现记忆功能。然而,精确分析与氧空位相关的电学、化学和电化学特性仍然具有挑战性。在这项研究中,我们制作了一个双栅薄膜晶体管(TFT)结构,采用HfO2作为顶部和底部栅极的栅极介质,并通过在底部栅极堆叠中引入TiO2中间层来有意地调制氧空位浓度。该TiO2层有效地增加了底栅电介质中氧空位的含量,促进了主要通过底栅进行的基于氧空位迁移的记忆操作。利用低频噪声(LFN)表征系统地分析了顶部和底部栅极之间的不对称性,首次阐明了氧空位调制对器件电学行为和操作机制的明显影响。这项全面的LFN分析为缺陷介导的存储器操作的基本动力学提供了关键的见解,强调了介电工程在优化下一代氧化物基电子器件中的重要性。本研究揭示了双栅HfO2-IGZO TFTs中的离子开关动力学,其中TiO2清除层调节氧空位以实现记忆操作。低频噪声光谱揭示了不同噪声机制之间的离子依赖转变,为空位驱动动力学提供了基本见解,并指导下一代计算的高k介电晶体管的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling ionic switching dynamics in high-k dielectric double-gate transistors via low-frequency noise spectroscopy

High-k dielectric materials such as HfO2 have garnered significant attention for their potential applications in advanced electronic devices due to their superior dielectric properties. Particularly, oxygen vacancies within these materials can be strategically utilized to implement memory functionalities. However, the precise analysis of the electrical, chemical, and electrochemical characteristics related to oxygen vacancies remains challenging. In this study, we fabricated a double-gate thin-film transistor (TFT) structure employing HfO2 as the gate dielectric for both top and bottom gates, with the oxygen vacancy concentration intentionally modulated by introducing a TiO2 interlayer at the bottom gate stack. This TiO2 layer effectively increases the oxygen vacancy content within the bottom gate dielectric, facilitating oxygen vacancy migration-based memory operation primarily through the bottom gate. The resulting asymmetry between the top and bottom gates was systematically analyzed using low-frequency noise (LFN) characterization, elucidating for the first time the distinct impacts of oxygen vacancy modulation on device electrical behavior and operational mechanisms. This comprehensive LFN analysis provides critical insights into the fundamental dynamics of defect-mediated memory operation, highlighting the importance of dielectric engineering in optimizing next-generation oxide-based electronic devices.

This study unravels ionic switching dynamics in double-gate HfO2–IGZO TFTs, where a TiO2 scavenging layer modulates oxygen vacancies to enable memory operation. Low-frequency noise spectroscopy reveals a ionic-dependent transition between distinct noise mechanisms, providing fundamental insights into vacancy-driven dynamics and guiding the optimization of high-k dielectric transistors for next-generation computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信