界面缺陷工程增强Cs3Bi2I9/MoS2异质结构光催化析氢性能的第一性原理研究

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-10-02 DOI:10.1039/D5RA05294G
Kyong-Mi Kim, Yun-Sim Kim, Dok-Ho Hyon, Chol-Hyok Ri and Chol-Jun Yu
{"title":"界面缺陷工程增强Cs3Bi2I9/MoS2异质结构光催化析氢性能的第一性原理研究","authors":"Kyong-Mi Kim, Yun-Sim Kim, Dok-Ho Hyon, Chol-Hyok Ri and Chol-Jun Yu","doi":"10.1039/D5RA05294G","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen has been attracting continuously growing interest as a highly efficient and clean energy source for replacing fossil fuels in the future, and thus developing highly efficient photocatalytic materials for hydrogen evolution is much desirable. In this work, we study the structural, electronic and optical properties of heterostructures composed of the bismuth-based vacancy-ordered iodide double perovskite Cs<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>9</sub></small> and a two-dimensional dichalcogenide 2H-MoS<small><sub>2</sub></small> monolayer without and with a vacancy defect using first-principles calculations. Our calculations demonstrate that the Cs<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>9</sub></small>/MoS<small><sub>2</sub></small> heterostructures are energetically stable and induce an interfacial dipole moment, which is beneficial for the prevention of charge carrier recombination. Due to the proper band-edge alignment and the smallest Gibbs free energy difference for hydrogen adsorption, the defective interface with a Cs-vacancy (V<small><sub>Cs</sub></small>) is found to be the most promising for photocatalytic hydrogen evolution. Moreover, we find that the interfacial V<small><sub>Cs</sub></small> defect can be formed favourably under the I-rich/Cs-poor condition, where V<small><sub>I</sub></small> and V<small><sub>S</sub></small> formations are suppressed. This work provides a way to develop high-performance photocatalysts based on heterostructures composed of the Bi-based halide perovskites and transition metal dichalcogenides for hydrogen evolution from solar-driven water splitting.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 43","pages":" 36607-36617"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra05294g?page=search","citationCount":"0","resultStr":"{\"title\":\"First-principles study on enhancing the photocatalytic hydrogen evolution performance in Cs3Bi2I9/MoS2 heterostructure with interfacial defect engineering\",\"authors\":\"Kyong-Mi Kim, Yun-Sim Kim, Dok-Ho Hyon, Chol-Hyok Ri and Chol-Jun Yu\",\"doi\":\"10.1039/D5RA05294G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen has been attracting continuously growing interest as a highly efficient and clean energy source for replacing fossil fuels in the future, and thus developing highly efficient photocatalytic materials for hydrogen evolution is much desirable. In this work, we study the structural, electronic and optical properties of heterostructures composed of the bismuth-based vacancy-ordered iodide double perovskite Cs<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>9</sub></small> and a two-dimensional dichalcogenide 2H-MoS<small><sub>2</sub></small> monolayer without and with a vacancy defect using first-principles calculations. Our calculations demonstrate that the Cs<small><sub>3</sub></small>Bi<small><sub>2</sub></small>I<small><sub>9</sub></small>/MoS<small><sub>2</sub></small> heterostructures are energetically stable and induce an interfacial dipole moment, which is beneficial for the prevention of charge carrier recombination. Due to the proper band-edge alignment and the smallest Gibbs free energy difference for hydrogen adsorption, the defective interface with a Cs-vacancy (V<small><sub>Cs</sub></small>) is found to be the most promising for photocatalytic hydrogen evolution. Moreover, we find that the interfacial V<small><sub>Cs</sub></small> defect can be formed favourably under the I-rich/Cs-poor condition, where V<small><sub>I</sub></small> and V<small><sub>S</sub></small> formations are suppressed. This work provides a way to develop high-performance photocatalysts based on heterostructures composed of the Bi-based halide perovskites and transition metal dichalcogenides for hydrogen evolution from solar-driven water splitting.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 43\",\"pages\":\" 36607-36617\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra05294g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra05294g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra05294g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氢作为一种高效、清洁的替代化石燃料的能源在未来受到越来越多的关注,因此开发高效的光催化材料用于氢的生成是非常必要的。在这项工作中,我们用第一性原理计算研究了由铋基空位有序碘化物双钙钛矿Cs3Bi2I9和二维二硫化物2H-MoS2单层组成的异质结构的结构、电子和光学性质。我们的计算表明,Cs3Bi2I9/MoS2异质结构能量稳定,并诱导界面偶极矩,这有利于防止载流子复合。由于具有合适的带边排列和最小的吸附氢的吉布斯自由能差,具有cs空位(VCs)的缺陷界面被认为是光催化析氢最有希望的。此外,我们发现在富i /贫cs条件下,界面vc缺陷有利于形成,其中VI和VS形成受到抑制。这项工作为开发基于铋基卤化物钙钛矿和过渡金属二硫族化合物组成的异质结构的高性能光催化剂提供了一条途径,用于太阳能驱动的水分解析氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-principles study on enhancing the photocatalytic hydrogen evolution performance in Cs3Bi2I9/MoS2 heterostructure with interfacial defect engineering

First-principles study on enhancing the photocatalytic hydrogen evolution performance in Cs3Bi2I9/MoS2 heterostructure with interfacial defect engineering

Hydrogen has been attracting continuously growing interest as a highly efficient and clean energy source for replacing fossil fuels in the future, and thus developing highly efficient photocatalytic materials for hydrogen evolution is much desirable. In this work, we study the structural, electronic and optical properties of heterostructures composed of the bismuth-based vacancy-ordered iodide double perovskite Cs3Bi2I9 and a two-dimensional dichalcogenide 2H-MoS2 monolayer without and with a vacancy defect using first-principles calculations. Our calculations demonstrate that the Cs3Bi2I9/MoS2 heterostructures are energetically stable and induce an interfacial dipole moment, which is beneficial for the prevention of charge carrier recombination. Due to the proper band-edge alignment and the smallest Gibbs free energy difference for hydrogen adsorption, the defective interface with a Cs-vacancy (VCs) is found to be the most promising for photocatalytic hydrogen evolution. Moreover, we find that the interfacial VCs defect can be formed favourably under the I-rich/Cs-poor condition, where VI and VS formations are suppressed. This work provides a way to develop high-performance photocatalysts based on heterostructures composed of the Bi-based halide perovskites and transition metal dichalcogenides for hydrogen evolution from solar-driven water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信