微米级金属颗粒在HVDC GIL绝缘子表面吸附的多尺度动态模拟研究

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yutong Zhang;Chenbin Jin;Luming Xin;Pengfei Zhang;Haoran Wang;Shengwu Tan;Peng Liu;Zongren Peng
{"title":"微米级金属颗粒在HVDC GIL绝缘子表面吸附的多尺度动态模拟研究","authors":"Yutong Zhang;Chenbin Jin;Luming Xin;Pengfei Zhang;Haoran Wang;Shengwu Tan;Peng Liu;Zongren Peng","doi":"10.1109/TDEI.2025.3539996","DOIUrl":null,"url":null,"abstract":"Free metal particles within HVdc gas-insulated transmission line (GIL) pose a significant threat to insulation integrity. This article presents a multiscale dynamic simulation method for micrometer-sized metal particles in HVdc GIL systems. It establishes an adhesion simulation model for these metal particles and captures their macroscopic movement in conjunction with microscopic properties. Based on this model, the collision characteristics of particles of algorithms, sizes, and shapes are analyzed. The simulation results indicate that the critical adsorption velocity of ellipsoidal particles with an eccentricity of 5 is six times greater than that of particles of the same size. The belly of the tri-post insulator is identified as a high-risk area for the adsorption of metal particles. While increasing the particle trap length enhances capture efficiency, a saturation phenomenon occurs, which varies with the electric field of the GIL insulator. Following simulation analysis, the optimal trap length is determined to be 550 mm. These studies provide methodologies for the accurate simulation of metal particles and contribute to particle pollution control and the reliability enhancement of HVdc GIL equipment.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"3049-3058"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Dynamic Simulation Study on the Adsorption of Micrometer-Sized Metal Particles on Insulator Surfaces for HVDC GIL\",\"authors\":\"Yutong Zhang;Chenbin Jin;Luming Xin;Pengfei Zhang;Haoran Wang;Shengwu Tan;Peng Liu;Zongren Peng\",\"doi\":\"10.1109/TDEI.2025.3539996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free metal particles within HVdc gas-insulated transmission line (GIL) pose a significant threat to insulation integrity. This article presents a multiscale dynamic simulation method for micrometer-sized metal particles in HVdc GIL systems. It establishes an adhesion simulation model for these metal particles and captures their macroscopic movement in conjunction with microscopic properties. Based on this model, the collision characteristics of particles of algorithms, sizes, and shapes are analyzed. The simulation results indicate that the critical adsorption velocity of ellipsoidal particles with an eccentricity of 5 is six times greater than that of particles of the same size. The belly of the tri-post insulator is identified as a high-risk area for the adsorption of metal particles. While increasing the particle trap length enhances capture efficiency, a saturation phenomenon occurs, which varies with the electric field of the GIL insulator. Following simulation analysis, the optimal trap length is determined to be 550 mm. These studies provide methodologies for the accurate simulation of metal particles and contribute to particle pollution control and the reliability enhancement of HVdc GIL equipment.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 5\",\"pages\":\"3049-3058\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10877880/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10877880/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高压直流气体绝缘输电线路中的游离金属颗粒对其绝缘完整性构成严重威胁。本文提出了一种微米级金属颗粒在高压直流GIL系统中的多尺度动态模拟方法。建立了这些金属颗粒的粘附模拟模型,并结合微观特性捕获了它们的宏观运动。在此模型的基础上,分析了粒子的算法、大小和形状的碰撞特征。模拟结果表明,偏心距为5的椭球颗粒的临界吸附速度是相同粒径颗粒的6倍。三柱绝缘子的腹部被确定为金属颗粒吸附的高风险区域。增加粒子阱长度提高捕获效率的同时,会出现饱和现象,这种饱和现象随GIL绝缘子电场的变化而变化。通过仿真分析,确定最佳陷阱长度为550 mm。这些研究为金属颗粒的精确模拟提供了方法,有助于颗粒污染控制和提高高压直流GIL设备的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Dynamic Simulation Study on the Adsorption of Micrometer-Sized Metal Particles on Insulator Surfaces for HVDC GIL
Free metal particles within HVdc gas-insulated transmission line (GIL) pose a significant threat to insulation integrity. This article presents a multiscale dynamic simulation method for micrometer-sized metal particles in HVdc GIL systems. It establishes an adhesion simulation model for these metal particles and captures their macroscopic movement in conjunction with microscopic properties. Based on this model, the collision characteristics of particles of algorithms, sizes, and shapes are analyzed. The simulation results indicate that the critical adsorption velocity of ellipsoidal particles with an eccentricity of 5 is six times greater than that of particles of the same size. The belly of the tri-post insulator is identified as a high-risk area for the adsorption of metal particles. While increasing the particle trap length enhances capture efficiency, a saturation phenomenon occurs, which varies with the electric field of the GIL insulator. Following simulation analysis, the optimal trap length is determined to be 550 mm. These studies provide methodologies for the accurate simulation of metal particles and contribute to particle pollution control and the reliability enhancement of HVdc GIL equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信