分布约束优化的一种加速分布比例积分法

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Zhen Yang;Wangli He;A. Pedro Aguiar
{"title":"分布约束优化的一种加速分布比例积分法","authors":"Zhen Yang;Wangli He;A. Pedro Aguiar","doi":"10.1109/LCSYS.2025.3607369","DOIUrl":null,"url":null,"abstract":"This letter addresses the distributed constrained optimization problem over multi-agent networks, where a group of agents collaboratively minimizes the average of their locally held objective functions, with the decision variables constrained within a global closed convex set. From a dynamic average consensus perspective, this letter proposes a new accelerated projection-based methods based on distributed proportional-integral (PI) framework, which requires communication of only one intermediate variable and avoids explicit gradient estimation, thereby reducing the communication burden compared to existing approaches that rely on gradient tracking techniques. To accelerate convergence, heavy-ball momentum terms are incorporated. Under smooth and strongly convex function assumptions, the proposed approach is demonstrated to converge linearly.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2241-2246"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accelerated Distributed Proportional-Integral Method for Distributed Constrained Optimization\",\"authors\":\"Zhen Yang;Wangli He;A. Pedro Aguiar\",\"doi\":\"10.1109/LCSYS.2025.3607369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the distributed constrained optimization problem over multi-agent networks, where a group of agents collaboratively minimizes the average of their locally held objective functions, with the decision variables constrained within a global closed convex set. From a dynamic average consensus perspective, this letter proposes a new accelerated projection-based methods based on distributed proportional-integral (PI) framework, which requires communication of only one intermediate variable and avoids explicit gradient estimation, thereby reducing the communication burden compared to existing approaches that rely on gradient tracking techniques. To accelerate convergence, heavy-ball momentum terms are incorporated. Under smooth and strongly convex function assumptions, the proposed approach is demonstrated to converge linearly.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2241-2246\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11153629/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153629/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这封信解决了多智能体网络上的分布式约束优化问题,其中一组智能体协作最小化其局部目标函数的平均值,决策变量约束在全局封闭凸集中。从动态平均共识的角度出发,本文提出了一种基于分布式比例积分(PI)框架的基于加速投影的新方法,该方法只需要一个中间变量的通信,并且避免了显式梯度估计,与依赖梯度跟踪技术的现有方法相比,减少了通信负担。为了加速收敛,加入了重球动量项。在光滑和强凸函数假设下,证明了该方法是线性收敛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accelerated Distributed Proportional-Integral Method for Distributed Constrained Optimization
This letter addresses the distributed constrained optimization problem over multi-agent networks, where a group of agents collaboratively minimizes the average of their locally held objective functions, with the decision variables constrained within a global closed convex set. From a dynamic average consensus perspective, this letter proposes a new accelerated projection-based methods based on distributed proportional-integral (PI) framework, which requires communication of only one intermediate variable and avoids explicit gradient estimation, thereby reducing the communication burden compared to existing approaches that rely on gradient tracking techniques. To accelerate convergence, heavy-ball momentum terms are incorporated. Under smooth and strongly convex function assumptions, the proposed approach is demonstrated to converge linearly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信