基于温度补偿cnn的变压器局部放电定位方法

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Haitao Wang;Shirong Zhang
{"title":"基于温度补偿cnn的变压器局部放电定位方法","authors":"Haitao Wang;Shirong Zhang","doi":"10.1109/TDEI.2025.3542015","DOIUrl":null,"url":null,"abstract":"An acoustic time reversal-convolutional neural network (ATR-CNN) approach is proposed for localizing partial discharge (PD) in power transformers with temperature compensation. A digital twin model is developed through multiphysics coupling analysis to accurately describe temperature distributions in oil-immersed natural air-cooling (ONAN) transformers. The temperature-compensated dual-sensor configuration demonstrates a root-mean-square error (RMSE) of 4.48 mm in PD localization, exhibiting a minimal accuracy degradation of 1.4 mm in unseen datasets while maintaining consistent performance across noise levels (0%–10%). Comparative analyses reveal the ATR-CNN methodology’s superior localization accuracy over traditional machine learning algorithms and enhanced performance in non-line-of-sight regions compared to the time difference of arrival (TDoA) approaches. A significant 264 000-fold reduction in computation time is achieved relative to ATR implementations. Integrating deep learning with ATR techniques offers an enhanced approach to PD localization in complex transformer environments.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2958-2967"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Temperature-Compensated CNN-Based Method for Transformer Partial Discharge Localization\",\"authors\":\"Haitao Wang;Shirong Zhang\",\"doi\":\"10.1109/TDEI.2025.3542015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An acoustic time reversal-convolutional neural network (ATR-CNN) approach is proposed for localizing partial discharge (PD) in power transformers with temperature compensation. A digital twin model is developed through multiphysics coupling analysis to accurately describe temperature distributions in oil-immersed natural air-cooling (ONAN) transformers. The temperature-compensated dual-sensor configuration demonstrates a root-mean-square error (RMSE) of 4.48 mm in PD localization, exhibiting a minimal accuracy degradation of 1.4 mm in unseen datasets while maintaining consistent performance across noise levels (0%–10%). Comparative analyses reveal the ATR-CNN methodology’s superior localization accuracy over traditional machine learning algorithms and enhanced performance in non-line-of-sight regions compared to the time difference of arrival (TDoA) approaches. A significant 264 000-fold reduction in computation time is achieved relative to ATR implementations. Integrating deep learning with ATR techniques offers an enhanced approach to PD localization in complex transformer environments.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 5\",\"pages\":\"2958-2967\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10884950/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884950/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于声时逆卷积神经网络(ATR-CNN)的温度补偿电力变压器局部放电定位方法。通过多物理场耦合分析,建立了准确描述油浸式自然空冷(ONAN)变压器温度分布的数字孪生模型。温度补偿双传感器配置显示PD定位的均方根误差(RMSE)为4.48 mm,在未见过的数据集中显示最小的精度下降1.4 mm,同时在噪声水平(0%-10%)下保持一致的性能。对比分析表明,与传统机器学习算法相比,ATR-CNN方法具有更高的定位精度,并且与到达时差(TDoA)方法相比,在非视距区域具有更高的性能。与ATR实现相比,计算时间显著减少了264,000倍。将深度学习与ATR技术相结合,为复杂变压器环境中的PD定位提供了一种增强的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Temperature-Compensated CNN-Based Method for Transformer Partial Discharge Localization
An acoustic time reversal-convolutional neural network (ATR-CNN) approach is proposed for localizing partial discharge (PD) in power transformers with temperature compensation. A digital twin model is developed through multiphysics coupling analysis to accurately describe temperature distributions in oil-immersed natural air-cooling (ONAN) transformers. The temperature-compensated dual-sensor configuration demonstrates a root-mean-square error (RMSE) of 4.48 mm in PD localization, exhibiting a minimal accuracy degradation of 1.4 mm in unseen datasets while maintaining consistent performance across noise levels (0%–10%). Comparative analyses reveal the ATR-CNN methodology’s superior localization accuracy over traditional machine learning algorithms and enhanced performance in non-line-of-sight regions compared to the time difference of arrival (TDoA) approaches. A significant 264 000-fold reduction in computation time is achieved relative to ATR implementations. Integrating deep learning with ATR techniques offers an enhanced approach to PD localization in complex transformer environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信