波动测量条件下基于NeRF 3D的鱼类称重模型

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lu Zhang;Zhongze Liu;Junjie Li;Ziqing Lu;Yuqing Liu
{"title":"波动测量条件下基于NeRF 3D的鱼类称重模型","authors":"Lu Zhang;Zhongze Liu;Junjie Li;Ziqing Lu;Yuqing Liu","doi":"10.1109/LSP.2025.3608626","DOIUrl":null,"url":null,"abstract":"Robust fish weight estimation is vital for sustainable fisheries, preventing overfishing and conserving resources, yet traditional methods are prone to environmental factors causing significant errors. To address the challenge, a vision-based fish weight estimation model is proposed, which generates a half-fish three dimensional point cloud from multi-angle images using neural radiance fields (NeRF), then applies bayesian optimization to identify the optimal hyperplane for full-fish reconstruction. This process estimates the fish volume, which is subsequently used to predict its weight through a generalized linear model. During the validation of the established dataset, the proposed method demonstrates remarkable performance with a mean square error of 0.007, root mean square error of 0.084 and a mean absolute error of 0.070, highlight its considerable application potential.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3675-3679"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NeRF 3D Based Fish Weighing Model Under Fluctuating Measuring Condition\",\"authors\":\"Lu Zhang;Zhongze Liu;Junjie Li;Ziqing Lu;Yuqing Liu\",\"doi\":\"10.1109/LSP.2025.3608626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust fish weight estimation is vital for sustainable fisheries, preventing overfishing and conserving resources, yet traditional methods are prone to environmental factors causing significant errors. To address the challenge, a vision-based fish weight estimation model is proposed, which generates a half-fish three dimensional point cloud from multi-angle images using neural radiance fields (NeRF), then applies bayesian optimization to identify the optimal hyperplane for full-fish reconstruction. This process estimates the fish volume, which is subsequently used to predict its weight through a generalized linear model. During the validation of the established dataset, the proposed method demonstrates remarkable performance with a mean square error of 0.007, root mean square error of 0.084 and a mean absolute error of 0.070, highlight its considerable application potential.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3675-3679\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11155111/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11155111/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

稳健的鱼重估计对于可持续渔业、防止过度捕捞和保护资源至关重要,但传统方法容易受到环境因素的影响,造成重大误差。为了解决这一问题,提出了一种基于视觉的鱼重估计模型,该模型利用神经辐射场(NeRF)从多角度图像中生成半鱼三维点云,然后应用贝叶斯优化识别全鱼重建的最佳超平面。这个过程估计鱼的体积,然后通过一个广义线性模型来预测鱼的重量。在对建立的数据集进行验证时,该方法的均方误差为0.007,均方根误差为0.084,平均绝对误差为0.070,表现出了显著的性能,显示出了相当大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NeRF 3D Based Fish Weighing Model Under Fluctuating Measuring Condition
Robust fish weight estimation is vital for sustainable fisheries, preventing overfishing and conserving resources, yet traditional methods are prone to environmental factors causing significant errors. To address the challenge, a vision-based fish weight estimation model is proposed, which generates a half-fish three dimensional point cloud from multi-angle images using neural radiance fields (NeRF), then applies bayesian optimization to identify the optimal hyperplane for full-fish reconstruction. This process estimates the fish volume, which is subsequently used to predict its weight through a generalized linear model. During the validation of the established dataset, the proposed method demonstrates remarkable performance with a mean square error of 0.007, root mean square error of 0.084 and a mean absolute error of 0.070, highlight its considerable application potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信