蒸馏-发酵双重处理红外-可见光目标检测

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tao Wang;Hui Wang;Yunli Zhu;Xinang Fan;Guoliang Luo
{"title":"蒸馏-发酵双重处理红外-可见光目标检测","authors":"Tao Wang;Hui Wang;Yunli Zhu;Xinang Fan;Guoliang Luo","doi":"10.1109/LSP.2025.3610025","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel dual-processing framework for infrared-visible object detection, inspired by the fermentation-distillation paradigm in traditional Chinese liquor brewing. To address the complementary characteristics of RGB and thermal modalities, we first design a Dual-stage Feature Complementary Fusion module (DFCF) that sequentially performs coarse and fine processing on cross-modal features. Subsequently, a Polymorphic Convolution module (PCM) is developed by extending the YOLOv11 architecture with variable kernels and channel separation strategies. Furthermore, an Adaptive Semantic Aggregation module (ASA) effectively integrates shallow boundary details with deep semantic features. Extensive experiments on multiple datasets demonstrate that our method achieves superior performance compared to widely adopted approaches, with particularly significant improvements in challenging scenarios like low-light conditions. The ablation studies validate the contributions of each proposed component.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3680-3684"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared-Visible Object Detection via Distillation-Fermentation Dual Processing\",\"authors\":\"Tao Wang;Hui Wang;Yunli Zhu;Xinang Fan;Guoliang Luo\",\"doi\":\"10.1109/LSP.2025.3610025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel dual-processing framework for infrared-visible object detection, inspired by the fermentation-distillation paradigm in traditional Chinese liquor brewing. To address the complementary characteristics of RGB and thermal modalities, we first design a Dual-stage Feature Complementary Fusion module (DFCF) that sequentially performs coarse and fine processing on cross-modal features. Subsequently, a Polymorphic Convolution module (PCM) is developed by extending the YOLOv11 architecture with variable kernels and channel separation strategies. Furthermore, an Adaptive Semantic Aggregation module (ASA) effectively integrates shallow boundary details with deep semantic features. Extensive experiments on multiple datasets demonstrate that our method achieves superior performance compared to widely adopted approaches, with particularly significant improvements in challenging scenarios like low-light conditions. The ablation studies validate the contributions of each proposed component.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3680-3684\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11164181/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11164181/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文受中国传统白酒酿造中的发酵-蒸馏模式的启发,提出了一种新的红外-可见光目标检测双处理框架。为了解决RGB和热模态的互补特性,我们首先设计了一个双阶段特征互补融合模块(DFCF),该模块依次对跨模态特征进行粗处理和精细处理。随后,通过扩展YOLOv11架构,采用可变核和信道分离策略,开发了多态卷积模块(PCM)。此外,自适应语义聚合模块(ASA)有效地将浅层边界细节与深层语义特征相结合。在多个数据集上进行的大量实验表明,与广泛采用的方法相比,我们的方法取得了卓越的性能,特别是在低光照条件等具有挑战性的情况下取得了显著的进步。烧蚀研究验证了每个提出的组成部分的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared-Visible Object Detection via Distillation-Fermentation Dual Processing
This paper proposes a novel dual-processing framework for infrared-visible object detection, inspired by the fermentation-distillation paradigm in traditional Chinese liquor brewing. To address the complementary characteristics of RGB and thermal modalities, we first design a Dual-stage Feature Complementary Fusion module (DFCF) that sequentially performs coarse and fine processing on cross-modal features. Subsequently, a Polymorphic Convolution module (PCM) is developed by extending the YOLOv11 architecture with variable kernels and channel separation strategies. Furthermore, an Adaptive Semantic Aggregation module (ASA) effectively integrates shallow boundary details with deep semantic features. Extensive experiments on multiple datasets demonstrate that our method achieves superior performance compared to widely adopted approaches, with particularly significant improvements in challenging scenarios like low-light conditions. The ablation studies validate the contributions of each proposed component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信