传染病爆发严重程度的可预测性:基孔肯雅热个案研究

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alexander D. Meyer, Sandra Mendoza Guerrero, Natalie E. Dean, Kathryn B. Anderson, Steven T. Stoddard, T. Alex Perkins
{"title":"传染病爆发严重程度的可预测性:基孔肯雅热个案研究","authors":"Alexander D. Meyer,&nbsp;Sandra Mendoza Guerrero,&nbsp;Natalie E. Dean,&nbsp;Kathryn B. Anderson,&nbsp;Steven T. Stoddard,&nbsp;T. Alex Perkins","doi":"10.1126/sciadv.adt5419","DOIUrl":null,"url":null,"abstract":"<div >A single pathogen can cause outbreaks of varying size and duration in different populations. Anticipating severe outbreaks would facilitate public health preparedness, but the extent to which this is possible is unclear. We conducted a data-driven investigation into the predictability of outbreak severity, using chikungunya virus (CHIKV) as a case study. For mosquito-transmitted viruses like CHIKV, the potential for severe outbreaks is often assessed using climate-based estimates of the basic reproduction number, <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> . We derived a large set of <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> estimates for CHIKV by fitting a mechanistic model to data from 86 chikungunya outbreaks. These <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> estimates were weakly predicted by climatic and other factors. Among deterministic drivers of outbreak severity, the contribution of <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> was comparable to that of generation interval length, transmission distance, and population network structure. While aspects of chikungunya outbreak severity are predictable, innovative approaches are needed that look beyond the impacts of climate on <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span>.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 40","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt5419","citationCount":"0","resultStr":"{\"title\":\"Predictability of infectious disease outbreak severity: Chikungunya as a case study\",\"authors\":\"Alexander D. Meyer,&nbsp;Sandra Mendoza Guerrero,&nbsp;Natalie E. Dean,&nbsp;Kathryn B. Anderson,&nbsp;Steven T. Stoddard,&nbsp;T. Alex Perkins\",\"doi\":\"10.1126/sciadv.adt5419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >A single pathogen can cause outbreaks of varying size and duration in different populations. Anticipating severe outbreaks would facilitate public health preparedness, but the extent to which this is possible is unclear. We conducted a data-driven investigation into the predictability of outbreak severity, using chikungunya virus (CHIKV) as a case study. For mosquito-transmitted viruses like CHIKV, the potential for severe outbreaks is often assessed using climate-based estimates of the basic reproduction number, <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> . We derived a large set of <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> estimates for CHIKV by fitting a mechanistic model to data from 86 chikungunya outbreaks. These <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> estimates were weakly predicted by climatic and other factors. Among deterministic drivers of outbreak severity, the contribution of <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span> was comparable to that of generation interval length, transmission distance, and population network structure. While aspects of chikungunya outbreak severity are predictable, innovative approaches are needed that look beyond the impacts of climate on <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math></span>.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 40\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt5419\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt5419\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt5419","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单一病原体可在不同人群中引起不同规模和持续时间的疫情。预测严重的疫情爆发将有助于公共卫生准备工作,但这在多大程度上是可能的尚不清楚。我们利用基孔肯雅病毒(CHIKV)作为案例研究,对疫情严重程度的可预测性进行了数据驱动的调查。对于像CHIKV这样的蚊子传播病毒,通常使用基于气候的基本繁殖数R 0来评估严重暴发的可能性。我们通过将一个机制模型拟合到86次基孔肯雅热暴发的数据中,得出了一组大的基孔肯雅热r0估计值。这些r0估计值被气候和其他因素预测得很弱。在疫情严重程度的确定性驱动因素中,r0的贡献与发电间隔长度、传输距离和种群网络结构的贡献相当。虽然基孔肯雅热疫情严重程度的各个方面是可预测的,但需要采取超越气候对疟疾影响的创新办法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predictability of infectious disease outbreak severity: Chikungunya as a case study

Predictability of infectious disease outbreak severity: Chikungunya as a case study
A single pathogen can cause outbreaks of varying size and duration in different populations. Anticipating severe outbreaks would facilitate public health preparedness, but the extent to which this is possible is unclear. We conducted a data-driven investigation into the predictability of outbreak severity, using chikungunya virus (CHIKV) as a case study. For mosquito-transmitted viruses like CHIKV, the potential for severe outbreaks is often assessed using climate-based estimates of the basic reproduction number, R0 . We derived a large set of R0 estimates for CHIKV by fitting a mechanistic model to data from 86 chikungunya outbreaks. These R0 estimates were weakly predicted by climatic and other factors. Among deterministic drivers of outbreak severity, the contribution of R0 was comparable to that of generation interval length, transmission distance, and population network structure. While aspects of chikungunya outbreak severity are predictable, innovative approaches are needed that look beyond the impacts of climate on R0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信