双向离子梯度能量转换调制的纳米相分离异质凝胶光离子电子学

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-02 DOI:10.1021/acsnano.5c12977
Xingyue Zhu, , , Ke Zhou, , , Zhixin Wu, , , Weiming Tang, , , Haoshuang Feng, , , Weipeng Chen*, , , Lei Jiang, , , Liping Wen, , and , Ziguang Zhao*, 
{"title":"双向离子梯度能量转换调制的纳米相分离异质凝胶光离子电子学","authors":"Xingyue Zhu,&nbsp;, ,&nbsp;Ke Zhou,&nbsp;, ,&nbsp;Zhixin Wu,&nbsp;, ,&nbsp;Weiming Tang,&nbsp;, ,&nbsp;Haoshuang Feng,&nbsp;, ,&nbsp;Weipeng Chen*,&nbsp;, ,&nbsp;Lei Jiang,&nbsp;, ,&nbsp;Liping Wen,&nbsp;, and ,&nbsp;Ziguang Zhao*,&nbsp;","doi":"10.1021/acsnano.5c12977","DOIUrl":null,"url":null,"abstract":"<p >Current light-responsive reverse electrodialysis systems within the salinity difference enhance the ion-gradient energy conversion efficiency by modulating the chemical potential gradient. However, the monotonic amplification of chemical potential gradient leads to the unidirectional enhancement of energy output and risk excessive energy release. Here, we present a nanophase-separation heterogel (NSH) photoiontronics featuring multiple heterointerfaces capable of light-induced bidirectional modulation of ion-gradient energy conversion. Under cis- and trans-gradient light fields, distinct photoexcited built-in heterointerfacial potentials are generated to counteract and reinforce the chemical potential gradient, respectively, thereby enabling a wide-span bidirectional modulation of ion-gradient power generation. The NSH photoiontronics exhibits a high output power density of 137.62 W/m<sup>2</sup> under a 500-fold ion gradient, with bidirectional light-responsive regulation ranging from 107.91 to 198.82 W/m<sup>2</sup>. Moreover, the synergistic effect of the heteronetwork enhances mechanical robustness and long-term swelling resistance while maintaining exceptional low-temperature ion modulation, indicating the outstanding environmental adaptability of NSH. The system also exhibits its large-scale performance, achieving output power densities ranging from 0.81 W/m<sup>2</sup> to 1.27 W/m<sup>2</sup> at the cm<sup>2</sup> scale. We further achieve the integration of a light-adaptive solar-osmotic energy conversion system, indicating the high compatibility of NSH photoiontronics for renewable energy utilization. The NSH photoiontronics provides a highly versatile and promising platform for field-modulated ion transport, demonstrating potential for developing intelligent ion-gradient energy conversion systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 40","pages":"35890–35900"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanophase-Separation Heterogel Photoiontronics for Bidirectional Ion-Gradient Energy Conversion Modulation\",\"authors\":\"Xingyue Zhu,&nbsp;, ,&nbsp;Ke Zhou,&nbsp;, ,&nbsp;Zhixin Wu,&nbsp;, ,&nbsp;Weiming Tang,&nbsp;, ,&nbsp;Haoshuang Feng,&nbsp;, ,&nbsp;Weipeng Chen*,&nbsp;, ,&nbsp;Lei Jiang,&nbsp;, ,&nbsp;Liping Wen,&nbsp;, and ,&nbsp;Ziguang Zhao*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c12977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Current light-responsive reverse electrodialysis systems within the salinity difference enhance the ion-gradient energy conversion efficiency by modulating the chemical potential gradient. However, the monotonic amplification of chemical potential gradient leads to the unidirectional enhancement of energy output and risk excessive energy release. Here, we present a nanophase-separation heterogel (NSH) photoiontronics featuring multiple heterointerfaces capable of light-induced bidirectional modulation of ion-gradient energy conversion. Under cis- and trans-gradient light fields, distinct photoexcited built-in heterointerfacial potentials are generated to counteract and reinforce the chemical potential gradient, respectively, thereby enabling a wide-span bidirectional modulation of ion-gradient power generation. The NSH photoiontronics exhibits a high output power density of 137.62 W/m<sup>2</sup> under a 500-fold ion gradient, with bidirectional light-responsive regulation ranging from 107.91 to 198.82 W/m<sup>2</sup>. Moreover, the synergistic effect of the heteronetwork enhances mechanical robustness and long-term swelling resistance while maintaining exceptional low-temperature ion modulation, indicating the outstanding environmental adaptability of NSH. The system also exhibits its large-scale performance, achieving output power densities ranging from 0.81 W/m<sup>2</sup> to 1.27 W/m<sup>2</sup> at the cm<sup>2</sup> scale. We further achieve the integration of a light-adaptive solar-osmotic energy conversion system, indicating the high compatibility of NSH photoiontronics for renewable energy utilization. The NSH photoiontronics provides a highly versatile and promising platform for field-modulated ion transport, demonstrating potential for developing intelligent ion-gradient energy conversion systems.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 40\",\"pages\":\"35890–35900\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c12977\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c12977","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当前的光响应反电渗析系统在盐度差异范围内通过调节化学势梯度来提高离子梯度能量转换效率。然而,化学势梯度的单调放大导致能量输出的单向增强,有能量过度释放的危险。在这里,我们提出了一种纳米相分离异质凝胶(NSH)光离子电子学,它具有多个异质界面,能够光诱导离子梯度能量转换的双向调制。在顺式和反式梯度光场下,产生不同的光激发内置异质界面势,分别抵消和增强化学势梯度,从而实现离子梯度发电的大跨度双向调制。在500倍离子梯度下,NSH光离子电子学的输出功率密度高达137.62 W/m2,双向光响应调节范围为107.91 ~ 198.82 W/m2。此外,异质网络的协同效应增强了NSH的机械稳健性和长期抗膨胀性,同时保持了优异的低温离子调制,表明NSH具有出色的环境适应性。该系统还展示了其大规模性能,在cm2尺度上实现了0.81 W/m2至1.27 W/m2的输出功率密度。我们进一步实现了光适应太阳渗透能量转换系统的集成,表明NSH光电子在可再生能源利用方面具有很高的兼容性。NSH光离子电子学为场调制离子传输提供了一个高度通用和有前途的平台,展示了开发智能离子梯度能量转换系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanophase-Separation Heterogel Photoiontronics for Bidirectional Ion-Gradient Energy Conversion Modulation

Nanophase-Separation Heterogel Photoiontronics for Bidirectional Ion-Gradient Energy Conversion Modulation

Nanophase-Separation Heterogel Photoiontronics for Bidirectional Ion-Gradient Energy Conversion Modulation

Current light-responsive reverse electrodialysis systems within the salinity difference enhance the ion-gradient energy conversion efficiency by modulating the chemical potential gradient. However, the monotonic amplification of chemical potential gradient leads to the unidirectional enhancement of energy output and risk excessive energy release. Here, we present a nanophase-separation heterogel (NSH) photoiontronics featuring multiple heterointerfaces capable of light-induced bidirectional modulation of ion-gradient energy conversion. Under cis- and trans-gradient light fields, distinct photoexcited built-in heterointerfacial potentials are generated to counteract and reinforce the chemical potential gradient, respectively, thereby enabling a wide-span bidirectional modulation of ion-gradient power generation. The NSH photoiontronics exhibits a high output power density of 137.62 W/m2 under a 500-fold ion gradient, with bidirectional light-responsive regulation ranging from 107.91 to 198.82 W/m2. Moreover, the synergistic effect of the heteronetwork enhances mechanical robustness and long-term swelling resistance while maintaining exceptional low-temperature ion modulation, indicating the outstanding environmental adaptability of NSH. The system also exhibits its large-scale performance, achieving output power densities ranging from 0.81 W/m2 to 1.27 W/m2 at the cm2 scale. We further achieve the integration of a light-adaptive solar-osmotic energy conversion system, indicating the high compatibility of NSH photoiontronics for renewable energy utilization. The NSH photoiontronics provides a highly versatile and promising platform for field-modulated ion transport, demonstrating potential for developing intelligent ion-gradient energy conversion systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信