聚二甲基硅氧烷封装的CsPbBr3量子点能够放大自发发射驱动的原位超高速监测水溶性食品添加剂

IF 3.3 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Analyst Pub Date : 2025-10-03 DOI:10.1039/d5an00719d
Jiayan Chen, Jie Gao, Cancan Wang, Yang Sun, Dandan Cao, Xinli Wang, Jiyuan Wu, Ziyue Jiao, Xiao Huang, Meng Zhao, Yi Wang, Xi-Cheng Ai, Li-Min Fu, Jian-Ping Zhang
{"title":"聚二甲基硅氧烷封装的CsPbBr3量子点能够放大自发发射驱动的原位超高速监测水溶性食品添加剂","authors":"Jiayan Chen, Jie Gao, Cancan Wang, Yang Sun, Dandan Cao, Xinli Wang, Jiyuan Wu, Ziyue Jiao, Xiao Huang, Meng Zhao, Yi Wang, Xi-Cheng Ai, Li-Min Fu, Jian-Ping Zhang","doi":"10.1039/d5an00719d","DOIUrl":null,"url":null,"abstract":"All-inorganic lead halide perovskite quantum dots (PQDs) exhibit outstanding photoluminescence (PL) for optical sensing, yet their severe instability in aqueous environments critically undermines reproducibility and sensitivity. Here, we develop waterproof PQD-based films that maintain 99.8% PL intensity after 2-hour water immersion, overcoming the longstanding hydration-induced degradation challenge. Notably, the films demonstrate amplified spontaneous emission (ASE) with an ultralow threshold of 1.72 μJ/cm2, achieving emission intensity one order of magnitude stronger than conventional PL. Leveraging these impressive properties, we pioneer an ASE-driven optical platform for in-situ monitoring of water-soluble food additives. As a proof of concept, by selecting tartrazine as the detection object, ultrahigh-speed detection at 108 fps is obtained with superior linearity (R2 = 0.999, 0–3.5 μM) for additive concentration quantification, which is unaccessible via existing PL methods under identical experimental conditions. This work establishes a paradigm shift for perovskite-based sensors by transforming material instability into a stabilized photonic advantage.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"41 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polydimethylsiloxane encapsulated CsPbBr3 quantum dots enable amplified spontaneous emission-driven in-situ, ultrahigh-speed monitoring of water-soluble food additives\",\"authors\":\"Jiayan Chen, Jie Gao, Cancan Wang, Yang Sun, Dandan Cao, Xinli Wang, Jiyuan Wu, Ziyue Jiao, Xiao Huang, Meng Zhao, Yi Wang, Xi-Cheng Ai, Li-Min Fu, Jian-Ping Zhang\",\"doi\":\"10.1039/d5an00719d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-inorganic lead halide perovskite quantum dots (PQDs) exhibit outstanding photoluminescence (PL) for optical sensing, yet their severe instability in aqueous environments critically undermines reproducibility and sensitivity. Here, we develop waterproof PQD-based films that maintain 99.8% PL intensity after 2-hour water immersion, overcoming the longstanding hydration-induced degradation challenge. Notably, the films demonstrate amplified spontaneous emission (ASE) with an ultralow threshold of 1.72 μJ/cm2, achieving emission intensity one order of magnitude stronger than conventional PL. Leveraging these impressive properties, we pioneer an ASE-driven optical platform for in-situ monitoring of water-soluble food additives. As a proof of concept, by selecting tartrazine as the detection object, ultrahigh-speed detection at 108 fps is obtained with superior linearity (R2 = 0.999, 0–3.5 μM) for additive concentration quantification, which is unaccessible via existing PL methods under identical experimental conditions. This work establishes a paradigm shift for perovskite-based sensors by transforming material instability into a stabilized photonic advantage.\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5an00719d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5an00719d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

全无机卤化铅钙钛矿量子点(PQDs)在光学传感方面表现出出色的光致发光(PL),但其在水环境中的严重不稳定性严重影响了再现性和灵敏度。在这里,我们开发了基于pqd的防水薄膜,在2小时的水浸后保持99.8%的PL强度,克服了长期存在的水化诱导降解挑战。值得注意的是,该薄膜具有1.72 μJ/cm2的超低阈值放大自发发射(ASE),发射强度比传统的自发发射强一个数量级。利用这些令人瞩目的特性,我们开创了一个由ASE驱动的光学平台,用于水溶性食品添加剂的原位监测。作为概念验证,选择酒黄石作为检测对象,获得了108 fps的超高速检测,具有良好的线性(R2 = 0.999, 0-3.5 μM),可用于添加剂浓度定量,这是现有的PL方法在相同实验条件下无法实现的。这项工作通过将材料不稳定性转化为稳定的光子优势,为钙钛矿基传感器建立了范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polydimethylsiloxane encapsulated CsPbBr3 quantum dots enable amplified spontaneous emission-driven in-situ, ultrahigh-speed monitoring of water-soluble food additives
All-inorganic lead halide perovskite quantum dots (PQDs) exhibit outstanding photoluminescence (PL) for optical sensing, yet their severe instability in aqueous environments critically undermines reproducibility and sensitivity. Here, we develop waterproof PQD-based films that maintain 99.8% PL intensity after 2-hour water immersion, overcoming the longstanding hydration-induced degradation challenge. Notably, the films demonstrate amplified spontaneous emission (ASE) with an ultralow threshold of 1.72 μJ/cm2, achieving emission intensity one order of magnitude stronger than conventional PL. Leveraging these impressive properties, we pioneer an ASE-driven optical platform for in-situ monitoring of water-soluble food additives. As a proof of concept, by selecting tartrazine as the detection object, ultrahigh-speed detection at 108 fps is obtained with superior linearity (R2 = 0.999, 0–3.5 μM) for additive concentration quantification, which is unaccessible via existing PL methods under identical experimental conditions. This work establishes a paradigm shift for perovskite-based sensors by transforming material instability into a stabilized photonic advantage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信