超隙光学材料

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaolei Hu, Xiang Guo, Zhengran Wu, Kun Chen, Xintian Chen, Zhilin Li, Ling Lu
{"title":"超隙光学材料","authors":"Xiaolei Hu, Xiang Guo, Zhengran Wu, Kun Chen, Xintian Chen, Zhilin Li, Ling Lu","doi":"10.1002/adma.202512769","DOIUrl":null,"url":null,"abstract":"Optical materials primarily refer to transparent insulators and semiconductors for guiding, diffracting, and nonlinearly‐generating light at photon energies below the electronic bandgaps. This work proposes that a solid can be equally lossless, above the fundamental bandgap, in an energy interval dubbed the hypergap, when the conduction and valence bands are well‐isolated. The optics within the hypergap could defy the conventional rules and limits set by the bandgap materials, including the low‐loss negative permittivity unavailable in existing metals, the anomalous‐dispersion phase matching in crystals without birefringence or microstructures, as well as the negative group‐velocity dispersion across the visible spectrum unattainable in known dielectrics. High‐throughput searches are performed in comprehensive material databases, predict over a hundred hypergap candidates, and experimentally verify one of them. Therefore, hypergap materials might lead to lower loss plasmonic metamaterials, easier wavelength converters in nonlinear optics, and simpler pulse stretchers or compressors in ultrafast optics, potentially transforming optics with unexplored material opportunities.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"11 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergap Optical Materials\",\"authors\":\"Xiaolei Hu, Xiang Guo, Zhengran Wu, Kun Chen, Xintian Chen, Zhilin Li, Ling Lu\",\"doi\":\"10.1002/adma.202512769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical materials primarily refer to transparent insulators and semiconductors for guiding, diffracting, and nonlinearly‐generating light at photon energies below the electronic bandgaps. This work proposes that a solid can be equally lossless, above the fundamental bandgap, in an energy interval dubbed the hypergap, when the conduction and valence bands are well‐isolated. The optics within the hypergap could defy the conventional rules and limits set by the bandgap materials, including the low‐loss negative permittivity unavailable in existing metals, the anomalous‐dispersion phase matching in crystals without birefringence or microstructures, as well as the negative group‐velocity dispersion across the visible spectrum unattainable in known dielectrics. High‐throughput searches are performed in comprehensive material databases, predict over a hundred hypergap candidates, and experimentally verify one of them. Therefore, hypergap materials might lead to lower loss plasmonic metamaterials, easier wavelength converters in nonlinear optics, and simpler pulse stretchers or compressors in ultrafast optics, potentially transforming optics with unexplored material opportunities.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202512769\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202512769","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光学材料主要是指用于引导、衍射和非线性产生光子能量低于电子带隙的光的透明绝缘体和半导体。这项工作提出,当导电带和价带被很好地隔离时,在称为超隙的能量区间内,固体可以在基本带隙以上同样无损。超隙内的光学器件可以突破带隙材料设定的常规规则和限制,包括现有金属中无法实现的低损耗负介电常数,无双折射或微结构晶体中的异常色散相匹配,以及在已知电介质中无法实现的可见光谱中的负群速度色散。在综合材料数据库中进行高通量搜索,预测超过100个超间隙候选物,并通过实验验证其中一个。因此,超隙材料可能导致损耗更低的等离子体超材料,非线性光学中更容易的波长转换器,以及超快光学中更简单的脉冲拉伸器或压缩器,潜在地用未开发的材料机会改变光学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hypergap Optical Materials

Hypergap Optical Materials
Optical materials primarily refer to transparent insulators and semiconductors for guiding, diffracting, and nonlinearly‐generating light at photon energies below the electronic bandgaps. This work proposes that a solid can be equally lossless, above the fundamental bandgap, in an energy interval dubbed the hypergap, when the conduction and valence bands are well‐isolated. The optics within the hypergap could defy the conventional rules and limits set by the bandgap materials, including the low‐loss negative permittivity unavailable in existing metals, the anomalous‐dispersion phase matching in crystals without birefringence or microstructures, as well as the negative group‐velocity dispersion across the visible spectrum unattainable in known dielectrics. High‐throughput searches are performed in comprehensive material databases, predict over a hundred hypergap candidates, and experimentally verify one of them. Therefore, hypergap materials might lead to lower loss plasmonic metamaterials, easier wavelength converters in nonlinear optics, and simpler pulse stretchers or compressors in ultrafast optics, potentially transforming optics with unexplored material opportunities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信