用共价硫醇功能化控制二硫化钼层间间距:从实验和模拟中理解结构和电化学

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-02 DOI:10.1021/acsnano.5c07717
Jaehoon Choi, , , Kyeonghyeon Nam, , , Yoga T. Malik, , , Robert Leiter, , , Maider Zarrabeitia, , , Christoph Scheurer, , and , Simon Fleischmann*, 
{"title":"用共价硫醇功能化控制二硫化钼层间间距:从实验和模拟中理解结构和电化学","authors":"Jaehoon Choi,&nbsp;, ,&nbsp;Kyeonghyeon Nam,&nbsp;, ,&nbsp;Yoga T. Malik,&nbsp;, ,&nbsp;Robert Leiter,&nbsp;, ,&nbsp;Maider Zarrabeitia,&nbsp;, ,&nbsp;Christoph Scheurer,&nbsp;, and ,&nbsp;Simon Fleischmann*,&nbsp;","doi":"10.1021/acsnano.5c07717","DOIUrl":null,"url":null,"abstract":"<p >Molybdenum disulfide (MoS<sub>2</sub>) is an increasingly investigated two-dimensional electrode material for electrochemical energy storage and conversion. Strategies to increase its interlayer spacing are emerging and have been shown to improve ion intercalation capacity and kinetics. This work explores covalent thiol functionalization for controlling MoS<sub>2</sub> interlayer spacing. Using a hydrothermal bottom-up synthesis, dithiolated molecules can be directly incorporated into the MoS<sub>2</sub> lattice to act as pillars. Using a comprehensive combination of experiments and simulation, we investigate the influence of dithiol pillar loading on the emerging structure, pillar–host interactions, and electrochemistry. Our results reveal clustering of pillars at low loading, leading to an inhomogeneous interlayer expansion. At high pillar loading, the formation of defective bonding configurations with excess sulfur is observed. Interlayer expansion leads to an increased electrochemical Li<sup>+</sup> storage capacity with a maximum of 1.43 Li<sup>+</sup> per MoS<sub>2</sub>. However, dithiols occupy storage sites and impede Li<sup>+</sup> transport within the interlayer space, leading to unfavorable performance at high pillar loading. This underlines the importance of carefully adjusting the density of nanoconfined pillar molecules within the interlayer space. Overall, the work comprehensively analyzes covalent dithiol functionalization of transition metal dichalcogenide-based electrode materials, offering valuable insights for the design of advanced energy materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 40","pages":"35425–35437"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07717","citationCount":"0","resultStr":"{\"title\":\"Interlayer Spacing Control of MoS2 with Covalent Thiol Functionalization: Understanding Structure and Electrochemistry from Experiments and Simulation\",\"authors\":\"Jaehoon Choi,&nbsp;, ,&nbsp;Kyeonghyeon Nam,&nbsp;, ,&nbsp;Yoga T. Malik,&nbsp;, ,&nbsp;Robert Leiter,&nbsp;, ,&nbsp;Maider Zarrabeitia,&nbsp;, ,&nbsp;Christoph Scheurer,&nbsp;, and ,&nbsp;Simon Fleischmann*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c07717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molybdenum disulfide (MoS<sub>2</sub>) is an increasingly investigated two-dimensional electrode material for electrochemical energy storage and conversion. Strategies to increase its interlayer spacing are emerging and have been shown to improve ion intercalation capacity and kinetics. This work explores covalent thiol functionalization for controlling MoS<sub>2</sub> interlayer spacing. Using a hydrothermal bottom-up synthesis, dithiolated molecules can be directly incorporated into the MoS<sub>2</sub> lattice to act as pillars. Using a comprehensive combination of experiments and simulation, we investigate the influence of dithiol pillar loading on the emerging structure, pillar–host interactions, and electrochemistry. Our results reveal clustering of pillars at low loading, leading to an inhomogeneous interlayer expansion. At high pillar loading, the formation of defective bonding configurations with excess sulfur is observed. Interlayer expansion leads to an increased electrochemical Li<sup>+</sup> storage capacity with a maximum of 1.43 Li<sup>+</sup> per MoS<sub>2</sub>. However, dithiols occupy storage sites and impede Li<sup>+</sup> transport within the interlayer space, leading to unfavorable performance at high pillar loading. This underlines the importance of carefully adjusting the density of nanoconfined pillar molecules within the interlayer space. Overall, the work comprehensively analyzes covalent dithiol functionalization of transition metal dichalcogenide-based electrode materials, offering valuable insights for the design of advanced energy materials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 40\",\"pages\":\"35425–35437\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07717\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c07717\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07717","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二硫化钼(MoS2)是一种用于电化学能量存储和转换的二维电极材料。增加其层间距的策略正在出现,并已被证明可以提高离子插入能力和动力学。这项工作探索共价硫醇功能化控制MoS2层间间距。采用水热自下而上的合成方法,二硫代分子可以直接结合到二硫化钼晶格中作为支柱。通过实验和模拟的综合结合,我们研究了二硫醇柱负载对新兴结构、柱-宿主相互作用和电化学的影响。我们的研究结果揭示了低载荷下柱的聚集,导致不均匀的层间膨胀。在高柱荷载下,观察到过量硫形成缺陷键合构型。层间膨胀导致电化学Li+存储容量增加,最大容量为1.43 Li+ / MoS2。然而,二硫醇占据了存储位置,阻碍了层间空间内Li+的运输,导致高柱载时性能不利。这强调了仔细调整层间空间内纳米柱分子密度的重要性。总体而言,该工作全面分析了过渡金属二硫族化合物基电极材料的共价二硫醇功能化,为先进能源材料的设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interlayer Spacing Control of MoS2 with Covalent Thiol Functionalization: Understanding Structure and Electrochemistry from Experiments and Simulation

Interlayer Spacing Control of MoS2 with Covalent Thiol Functionalization: Understanding Structure and Electrochemistry from Experiments and Simulation

Molybdenum disulfide (MoS2) is an increasingly investigated two-dimensional electrode material for electrochemical energy storage and conversion. Strategies to increase its interlayer spacing are emerging and have been shown to improve ion intercalation capacity and kinetics. This work explores covalent thiol functionalization for controlling MoS2 interlayer spacing. Using a hydrothermal bottom-up synthesis, dithiolated molecules can be directly incorporated into the MoS2 lattice to act as pillars. Using a comprehensive combination of experiments and simulation, we investigate the influence of dithiol pillar loading on the emerging structure, pillar–host interactions, and electrochemistry. Our results reveal clustering of pillars at low loading, leading to an inhomogeneous interlayer expansion. At high pillar loading, the formation of defective bonding configurations with excess sulfur is observed. Interlayer expansion leads to an increased electrochemical Li+ storage capacity with a maximum of 1.43 Li+ per MoS2. However, dithiols occupy storage sites and impede Li+ transport within the interlayer space, leading to unfavorable performance at high pillar loading. This underlines the importance of carefully adjusting the density of nanoconfined pillar molecules within the interlayer space. Overall, the work comprehensively analyzes covalent dithiol functionalization of transition metal dichalcogenide-based electrode materials, offering valuable insights for the design of advanced energy materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信