Alan Tsz-Lok Lam, Masaru Shibata, Kyohei Kawaguchi, Joaquin Pelle
{"title":"广义相对论中的黑洞-吸积盘碰撞:轴对称模拟","authors":"Alan Tsz-Lok Lam, Masaru Shibata, Kyohei Kawaguchi, Joaquin Pelle","doi":"10.1103/m2tv-l3z8","DOIUrl":null,"url":null,"abstract":"Motivated by recent discoveries of X-ray quasiperiodic eruptions, we revisit the collision of a black hole and an accretion disk. Assuming that they are orbiting a supermassive black hole in orthogonal orbits, we perform a general relativistic simulation of the collision, varying the relative velocity V</a:mi>0</a:mn></a:msub></a:math> from <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>0.032</c:mn><c:mi>c</c:mi></c:math> to <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mn>0.2</e:mn><e:mi>c</e:mi></e:math> (where <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>c</g:mi></g:math> is the speed of light) with a variety of disk thickness and a realistic local density profile for the disk. Our findings indicate that the mass of the outflow matter from the disk, <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>m</i:mi><i:mrow><i:mi>ej</i:mi></i:mrow></i:msub></i:math>, is slightly less than the expected value. Meanwhile, the typical energy associated with this outflow <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>E</k:mi><k:mrow><k:mi>ej</k:mi></k:mrow></k:msub></k:math> is <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mo>∼</m:mo><m:msub><m:mi>m</m:mi><m:mrow><m:mi>ej</m:mi></m:mrow></m:msub><m:msubsup><m:mi>V</m:mi><m:mn>0</m:mn><m:mn>2</m:mn></m:msubsup></m:math>. Thus, the predicted peak luminosity from disk flares is approximately equal to the Eddington luminosity of the black hole, whereas the peak time and duration of the flares, which are <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mo>∝</o:mo><o:msubsup><o:mi>m</o:mi><o:mrow><o:mi>ej</o:mi></o:mrow><o:mrow><o:mn>1</o:mn><o:mo>/</o:mo><o:mn>2</o:mn></o:mrow></o:msubsup></o:math>, are shorter than that previously believed. We also demonstrate that the property of the outflow matter induced by the incoming and outgoing stages of the black hole collision is appreciably different. We find that a high mass accretion rate onto the black hole from the disk persists for a timescale of <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mo>∼</q:mo><q:msup><q:mn>10</q:mn><q:mn>6</q:mn></q:msup></q:math> Schwarzschild time of the black hole after the collision for <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>V</s:mi><s:mn>0</s:mn></s:msub><s:mo>/</s:mo><s:mi>c</s:mi><s:mo>≲</s:mo><s:mn>0.1</s:mn></s:math>, making this long-term accretion onto the black hole the dominant emission process for black hole-disk collision events. Implications of these results are discussed.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"98 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black hole-accretion disk collision in general relativity: Axisymmetric simulations\",\"authors\":\"Alan Tsz-Lok Lam, Masaru Shibata, Kyohei Kawaguchi, Joaquin Pelle\",\"doi\":\"10.1103/m2tv-l3z8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by recent discoveries of X-ray quasiperiodic eruptions, we revisit the collision of a black hole and an accretion disk. Assuming that they are orbiting a supermassive black hole in orthogonal orbits, we perform a general relativistic simulation of the collision, varying the relative velocity V</a:mi>0</a:mn></a:msub></a:math> from <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mn>0.032</c:mn><c:mi>c</c:mi></c:math> to <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mn>0.2</e:mn><e:mi>c</e:mi></e:math> (where <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>c</g:mi></g:math> is the speed of light) with a variety of disk thickness and a realistic local density profile for the disk. Our findings indicate that the mass of the outflow matter from the disk, <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>m</i:mi><i:mrow><i:mi>ej</i:mi></i:mrow></i:msub></i:math>, is slightly less than the expected value. Meanwhile, the typical energy associated with this outflow <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msub><k:mi>E</k:mi><k:mrow><k:mi>ej</k:mi></k:mrow></k:msub></k:math> is <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mo>∼</m:mo><m:msub><m:mi>m</m:mi><m:mrow><m:mi>ej</m:mi></m:mrow></m:msub><m:msubsup><m:mi>V</m:mi><m:mn>0</m:mn><m:mn>2</m:mn></m:msubsup></m:math>. Thus, the predicted peak luminosity from disk flares is approximately equal to the Eddington luminosity of the black hole, whereas the peak time and duration of the flares, which are <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mo>∝</o:mo><o:msubsup><o:mi>m</o:mi><o:mrow><o:mi>ej</o:mi></o:mrow><o:mrow><o:mn>1</o:mn><o:mo>/</o:mo><o:mn>2</o:mn></o:mrow></o:msubsup></o:math>, are shorter than that previously believed. We also demonstrate that the property of the outflow matter induced by the incoming and outgoing stages of the black hole collision is appreciably different. We find that a high mass accretion rate onto the black hole from the disk persists for a timescale of <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mo>∼</q:mo><q:msup><q:mn>10</q:mn><q:mn>6</q:mn></q:msup></q:math> Schwarzschild time of the black hole after the collision for <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:msub><s:mi>V</s:mi><s:mn>0</s:mn></s:msub><s:mo>/</s:mo><s:mi>c</s:mi><s:mo>≲</s:mo><s:mn>0.1</s:mn></s:math>, making this long-term accretion onto the black hole the dominant emission process for black hole-disk collision events. Implications of these results are discussed.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/m2tv-l3z8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/m2tv-l3z8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Black hole-accretion disk collision in general relativity: Axisymmetric simulations
Motivated by recent discoveries of X-ray quasiperiodic eruptions, we revisit the collision of a black hole and an accretion disk. Assuming that they are orbiting a supermassive black hole in orthogonal orbits, we perform a general relativistic simulation of the collision, varying the relative velocity V0 from 0.032c to 0.2c (where c is the speed of light) with a variety of disk thickness and a realistic local density profile for the disk. Our findings indicate that the mass of the outflow matter from the disk, mej, is slightly less than the expected value. Meanwhile, the typical energy associated with this outflow Eej is ∼mejV02. Thus, the predicted peak luminosity from disk flares is approximately equal to the Eddington luminosity of the black hole, whereas the peak time and duration of the flares, which are ∝mej1/2, are shorter than that previously believed. We also demonstrate that the property of the outflow matter induced by the incoming and outgoing stages of the black hole collision is appreciably different. We find that a high mass accretion rate onto the black hole from the disk persists for a timescale of ∼106 Schwarzschild time of the black hole after the collision for V0/c≲0.1, making this long-term accretion onto the black hole the dominant emission process for black hole-disk collision events. Implications of these results are discussed.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.