数据驱动的非等摩尔稀土硅酸盐在1550°C时具有相稳定性和高CMAS电阻的加速设计

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Bin Qian, Wei Liang, Yumin Tu, Jiahao Zu, Keyuan Xu, Xinchen Ding, Yu Wang, Fangli Yu, Yu Bai
{"title":"数据驱动的非等摩尔稀土硅酸盐在1550°C时具有相稳定性和高CMAS电阻的加速设计","authors":"Bin Qian, Wei Liang, Yumin Tu, Jiahao Zu, Keyuan Xu, Xinchen Ding, Yu Wang, Fangli Yu, Yu Bai","doi":"10.1016/j.jallcom.2025.184100","DOIUrl":null,"url":null,"abstract":"The vast compositional space of non-equimolar systems requires data-driven methods to predict phase stability and CMAS resistance of rare-earth silicates (RESs). A dataset of phase structure and CMAS resistance was established by combining RESs synthesized in this work via sol–gel methods with open data. Rietveld-refined XRD data revealed linear correlations among <span><span><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">I</mi></mrow><mrow is=\"true\"><mo is=\"true\">max</mo></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">I</mi></mrow><mrow is=\"true\"><mo is=\"true\">max</mo></mrow></msub></math></script></span>, lattice constants, distortion, and <span><span><math><msub is=\"true\"><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">̄</mo></mrow></mover></mrow><mrow is=\"true\"><mi is=\"true\">M</mi><mi is=\"true\">e</mi></mrow></msub></math></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">̄</mo></mrow></mover></mrow><mrow is=\"true\"><mi is=\"true\">M</mi><mi is=\"true\">e</mi></mrow></msub></math></script></span>. A total of 37 potential descriptors were screened using machine learning. A voting ensemble classifier identified rare-earth disilicates compositions forming a stable <span><span><math><mi is=\"true\">β</mi></math></span><script type=\"math/mml\"><math><mi is=\"true\">β</mi></math></script></span>-phase, without enforcing a strict distinction between multi- and <span><span><math><mi is=\"true\">γ</mi></math></span><script type=\"math/mml\"><math><mi is=\"true\">γ</mi></math></script></span>-phase, due to varying testing temperatures across research groups. A corrosion grading function (CRG) was introduced to mathematically classify the CMAS resistance levels of RESs, reducing the dimensionality of experimental datasets. The XGBoost model was used to predict about 3.5 million non-equimolar compositions by systematic enumeration five elements from a cost-effective RE pool (Yb, Tm, Er, Y, Ho, Tb, Gd), identifying optimized formulations. Experimental validation at 1550 <span><span><math><mrow is=\"true\"><mo is=\"true\">°</mo><mi is=\"true\" mathvariant=\"normal\">C</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">°</mo><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math></script></span> for 24 h on the composition <span><span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Gd</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">05</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Er</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">1</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Yb</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">375</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Y</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">025</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">Tm</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">45</mn></mrow></msub><mo is=\"true\">)</mo></mrow></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">SiO</mi></mrow><mrow is=\"true\"><mn is=\"true\">5</mn></mrow></msub></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Gd</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">05</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Er</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">1</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Yb</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">375</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Y</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">025</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">Tm</mi></mrow><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\">.</mo><mn is=\"true\">45</mn></mrow></msub><mo is=\"true\">)</mo></mrow></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msub><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">SiO</mi></mrow><mrow is=\"true\"><mn is=\"true\">5</mn></mrow></msub></mrow></math></script></span> showed an average corrosion layer thickness of approximately <span><span><math><mrow is=\"true\"><mn is=\"true\">33</mn><mo is=\"true\">.</mo><mn is=\"true\">5</mn><mspace is=\"true\" width=\"0.33em\"></mspace><mi is=\"true\" mathvariant=\"normal\">μ</mi><mi is=\"true\" mathvariant=\"normal\">m</mi></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">33</mn><mo is=\"true\">.</mo><mn is=\"true\">5</mn><mspace width=\"0.33em\" is=\"true\"></mspace><mi mathvariant=\"normal\" is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">m</mi></mrow></math></script></span>, confirming the effectiveness of the data-driven approach in accelerating the design of non-equimolar RESs for environmental barrier coatings.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"75 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven accelerated design of non-equimolar rare-earth silicates with phase stability and high CMAS resistance at 1550 °C\",\"authors\":\"Bin Qian, Wei Liang, Yumin Tu, Jiahao Zu, Keyuan Xu, Xinchen Ding, Yu Wang, Fangli Yu, Yu Bai\",\"doi\":\"10.1016/j.jallcom.2025.184100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast compositional space of non-equimolar systems requires data-driven methods to predict phase stability and CMAS resistance of rare-earth silicates (RESs). A dataset of phase structure and CMAS resistance was established by combining RESs synthesized in this work via sol–gel methods with open data. Rietveld-refined XRD data revealed linear correlations among <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">I</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">max</mo></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">I</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">max</mo></mrow></msub></math></script></span>, lattice constants, distortion, and <span><span><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mover accent=\\\"true\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">r</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">̄</mo></mrow></mover></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mi is=\\\"true\\\">e</mi></mrow></msub></math></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mover accent=\\\"true\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">r</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">̄</mo></mrow></mover></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mi is=\\\"true\\\">e</mi></mrow></msub></math></script></span>. A total of 37 potential descriptors were screened using machine learning. A voting ensemble classifier identified rare-earth disilicates compositions forming a stable <span><span><math><mi is=\\\"true\\\">β</mi></math></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">β</mi></math></script></span>-phase, without enforcing a strict distinction between multi- and <span><span><math><mi is=\\\"true\\\">γ</mi></math></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">γ</mi></math></script></span>-phase, due to varying testing temperatures across research groups. A corrosion grading function (CRG) was introduced to mathematically classify the CMAS resistance levels of RESs, reducing the dimensionality of experimental datasets. The XGBoost model was used to predict about 3.5 million non-equimolar compositions by systematic enumeration five elements from a cost-effective RE pool (Yb, Tm, Er, Y, Ho, Tb, Gd), identifying optimized formulations. Experimental validation at 1550 <span><span><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">°</mo><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">C</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">°</mo><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">C</mi></mrow></math></script></span> for 24 h on the composition <span><span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">Gd</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">05</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">Er</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">1</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">Yb</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">375</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">Y</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">025</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">Tm</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">45</mn></mrow></msub><mo is=\\\"true\\\">)</mo></mrow></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">SiO</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">5</mn></mrow></msub></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">(</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">Gd</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">05</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">Er</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">1</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">Yb</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">375</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">Y</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">025</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">Tm</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">45</mn></mrow></msub><mo is=\\\"true\\\">)</mo></mrow></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn></mrow></msub><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">SiO</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">5</mn></mrow></msub></mrow></math></script></span> showed an average corrosion layer thickness of approximately <span><span><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">33</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">5</mn><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">μ</mi><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">m</mi></mrow></math></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">33</mn><mo is=\\\"true\\\">.</mo><mn is=\\\"true\\\">5</mn><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">μ</mi><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">m</mi></mrow></math></script></span>, confirming the effectiveness of the data-driven approach in accelerating the design of non-equimolar RESs for environmental barrier coatings.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.184100\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

非等摩尔体系的巨大组成空间需要数据驱动的方法来预测稀土硅酸盐(RESs)的相稳定性和抗CMAS性能。将溶胶-凝胶法合成的RESs与公开数据相结合,建立了相结构和CMAS电阻数据集。Rietveld-refined XRD数据揭示了ImaxImax、晶格常数、畸变和r * Mer * Me之间的线性相关性。使用机器学习总共筛选了37个潜在的描述符。投票集合分类器识别出稀土分离组分形成稳定的ββ相,而没有强制严格区分多相和γγ相,由于不同研究组的测试温度不同。通过引入腐蚀分级函数(CRG)对实验数据集进行数学分类,降低了实验数据集的维数。XGBoost模型通过系统枚举具有成本效益的稀土池中的五种元素(Yb, Tm, Er, Y, Ho, Tb, Gd),预测了约350万种非等摩尔成分,确定了优化配方。实验验证,在1550°C°C下保温24 h, (Gd0.05Er0.1Yb0.375Y0.025Tm0.45)2SiO5(Gd0.05Er0.1Yb0.375Y0.025Tm0.45)2SiO5的平均腐蚀层厚度约为33.5μm33.5μm,证实了数据驱动方法在加速环境屏障涂层非等摩尔RESs设计中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven accelerated design of non-equimolar rare-earth silicates with phase stability and high CMAS resistance at 1550 °C
The vast compositional space of non-equimolar systems requires data-driven methods to predict phase stability and CMAS resistance of rare-earth silicates (RESs). A dataset of phase structure and CMAS resistance was established by combining RESs synthesized in this work via sol–gel methods with open data. Rietveld-refined XRD data revealed linear correlations among Imax, lattice constants, distortion, and r̄Me. A total of 37 potential descriptors were screened using machine learning. A voting ensemble classifier identified rare-earth disilicates compositions forming a stable β-phase, without enforcing a strict distinction between multi- and γ-phase, due to varying testing temperatures across research groups. A corrosion grading function (CRG) was introduced to mathematically classify the CMAS resistance levels of RESs, reducing the dimensionality of experimental datasets. The XGBoost model was used to predict about 3.5 million non-equimolar compositions by systematic enumeration five elements from a cost-effective RE pool (Yb, Tm, Er, Y, Ho, Tb, Gd), identifying optimized formulations. Experimental validation at 1550 °C for 24 h on the composition (Gd0.05Er0.1Yb0.375Y0.025Tm0.45)2SiO5 showed an average corrosion layer thickness of approximately 33.5μm, confirming the effectiveness of the data-driven approach in accelerating the design of non-equimolar RESs for environmental barrier coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信