通过电子-晶格耦合调制jhn - teller畸变以提高先进钠离子电池的聚阴离子阴极的循环稳定性

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jiajia An, Hanlin Wang, Lingfei Zhao, Qiang Wang, Binkai Yu, Ye Li, Wenxi Zhao, Jinqiao Hu, Jiarun Geng, Limin Zhou, He Zhu, Hui Xia, Qinfen Gu, Ruohan Yu, Mei Yang, Guoxiu Wang, Mingzhe Chen
{"title":"通过电子-晶格耦合调制jhn - teller畸变以提高先进钠离子电池的聚阴离子阴极的循环稳定性","authors":"Jiajia An, Hanlin Wang, Lingfei Zhao, Qiang Wang, Binkai Yu, Ye Li, Wenxi Zhao, Jinqiao Hu, Jiarun Geng, Limin Zhou, He Zhu, Hui Xia, Qinfen Gu, Ruohan Yu, Mei Yang, Guoxiu Wang, Mingzhe Chen","doi":"10.1016/j.ensm.2025.104645","DOIUrl":null,"url":null,"abstract":"Manganese-based polyanionic compounds are one of the most promising cathode materials for sodium-ion batteries due to cost-effectiveness, high-voltage capability, and environmental friendliness. Nevertheless, the strong Jahn-Teller distortion (JTD) in high-spin Mn<sup>3+</sup> state induces localized stress concentration and irreversible structural collapse, while the low-JTD state causes elevated lattice rigidity via enhanced Mn–O bond covalency, leading to inferior electrochemical stability. Herein, we propose an electron-lattice coupling modulation strategy by constructing a Ti<sup>4+</sup>-mediated Mn-O-Ti superexchange interactions within the polyanionic NaMnPO<sub>4</sub> framework to enable electronic state reconfiguration and dynamic lattice response for controllable JTD regulation. We show that the strong orbital hybridization between Ti<sup>4+</sup> <em>d</em><sup>0</sup> and O 2<em>p</em> enhances the covalency of Mn–O bonds and broadens the Mn<sup>3+</sup> <em>e</em><sub>g</sub> orbitals into Mn(<em>e</em><sub>g</sub>)-O(2<em>p</em>) hybridized bands, thus reducing the intrinsic electron degeneracy of the Mn<sup>3+</sup> <em>e</em><sub>g</sub> orbitals. Furthermore, the flexible TiO<sub>6</sub> octahedra facilitate homogeneous reversible microstrains through elastic deformation and enable effective lattice stress dissipation. The NaMn<sub>0.80</sub>Ti<sub>0.20</sub>PO<sub>4</sub> exhibits an optimal JTD magnitude of <em>σ</em><sup>2</sup> = 0.009 and a 91.03% improvement in strain homogeneity compared to the pristine sample. These enhancements contribute to a high-capacity retention of 96.75% after 500 cycles at 2 C. (vs. 77.85% for NaMnPO<sub>4</sub>). This work establishes a universal paradigm to modulate the JTD in high-spin transition-metal cathodes, opening new avenues for high-stability cathode design.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"98 1","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored Modulation of Jahn-Teller Distortion via Electron-Lattice Coupling to Enhance the Cycling Stability of Polyanionic Cathodes for Advance Sodium-Ion Batteries\",\"authors\":\"Jiajia An, Hanlin Wang, Lingfei Zhao, Qiang Wang, Binkai Yu, Ye Li, Wenxi Zhao, Jinqiao Hu, Jiarun Geng, Limin Zhou, He Zhu, Hui Xia, Qinfen Gu, Ruohan Yu, Mei Yang, Guoxiu Wang, Mingzhe Chen\",\"doi\":\"10.1016/j.ensm.2025.104645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manganese-based polyanionic compounds are one of the most promising cathode materials for sodium-ion batteries due to cost-effectiveness, high-voltage capability, and environmental friendliness. Nevertheless, the strong Jahn-Teller distortion (JTD) in high-spin Mn<sup>3+</sup> state induces localized stress concentration and irreversible structural collapse, while the low-JTD state causes elevated lattice rigidity via enhanced Mn–O bond covalency, leading to inferior electrochemical stability. Herein, we propose an electron-lattice coupling modulation strategy by constructing a Ti<sup>4+</sup>-mediated Mn-O-Ti superexchange interactions within the polyanionic NaMnPO<sub>4</sub> framework to enable electronic state reconfiguration and dynamic lattice response for controllable JTD regulation. We show that the strong orbital hybridization between Ti<sup>4+</sup> <em>d</em><sup>0</sup> and O 2<em>p</em> enhances the covalency of Mn–O bonds and broadens the Mn<sup>3+</sup> <em>e</em><sub>g</sub> orbitals into Mn(<em>e</em><sub>g</sub>)-O(2<em>p</em>) hybridized bands, thus reducing the intrinsic electron degeneracy of the Mn<sup>3+</sup> <em>e</em><sub>g</sub> orbitals. Furthermore, the flexible TiO<sub>6</sub> octahedra facilitate homogeneous reversible microstrains through elastic deformation and enable effective lattice stress dissipation. The NaMn<sub>0.80</sub>Ti<sub>0.20</sub>PO<sub>4</sub> exhibits an optimal JTD magnitude of <em>σ</em><sup>2</sup> = 0.009 and a 91.03% improvement in strain homogeneity compared to the pristine sample. These enhancements contribute to a high-capacity retention of 96.75% after 500 cycles at 2 C. (vs. 77.85% for NaMnPO<sub>4</sub>). This work establishes a universal paradigm to modulate the JTD in high-spin transition-metal cathodes, opening new avenues for high-stability cathode design.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2025.104645\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104645","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锰基聚阴离子化合物具有成本效益、高电压性能和环境友好性,是钠离子电池最有前途的正极材料之一。然而,高自旋Mn3+态的强jhn - teller畸变(JTD)会引起局部应力集中和不可逆结构崩溃,而低JTD态通过增强Mn-O键共价导致晶格刚度升高,导致电化学稳定性下降。在此,我们提出了一种电子-晶格耦合调制策略,通过在聚阴离子NaMnPO4框架内构建Ti4+介导的Mn-O-Ti超交换相互作用,实现电子态重构和动态晶格响应,以实现可控JTD调节。我们发现Ti4+ d0和o2p之间的强轨道杂化增强了Mn -O键的共价,使Mn3+ eg轨道拓宽为Mn(eg)-O(2p)杂化带,从而降低了Mn3+ eg轨道的本征电子简并度。此外,柔性TiO6八面体通过弹性变形促进均匀可逆微应变,并使晶格应力有效消散。与原始样品相比,NaMn0.80Ti0.20PO4的最佳JTD量级为σ2 = 0.009,应变均匀性提高了91.03%。这些增强有助于在2℃下循环500次后保持96.75%的高容量(相比之下,NaMnPO4为77.85%)。本研究为高自旋过渡金属阴极的JTD调制建立了一个通用范例,为高稳定性阴极设计开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailored Modulation of Jahn-Teller Distortion via Electron-Lattice Coupling to Enhance the Cycling Stability of Polyanionic Cathodes for Advance Sodium-Ion Batteries

Tailored Modulation of Jahn-Teller Distortion via Electron-Lattice Coupling to Enhance the Cycling Stability of Polyanionic Cathodes for Advance Sodium-Ion Batteries
Manganese-based polyanionic compounds are one of the most promising cathode materials for sodium-ion batteries due to cost-effectiveness, high-voltage capability, and environmental friendliness. Nevertheless, the strong Jahn-Teller distortion (JTD) in high-spin Mn3+ state induces localized stress concentration and irreversible structural collapse, while the low-JTD state causes elevated lattice rigidity via enhanced Mn–O bond covalency, leading to inferior electrochemical stability. Herein, we propose an electron-lattice coupling modulation strategy by constructing a Ti4+-mediated Mn-O-Ti superexchange interactions within the polyanionic NaMnPO4 framework to enable electronic state reconfiguration and dynamic lattice response for controllable JTD regulation. We show that the strong orbital hybridization between Ti4+ d0 and O 2p enhances the covalency of Mn–O bonds and broadens the Mn3+ eg orbitals into Mn(eg)-O(2p) hybridized bands, thus reducing the intrinsic electron degeneracy of the Mn3+ eg orbitals. Furthermore, the flexible TiO6 octahedra facilitate homogeneous reversible microstrains through elastic deformation and enable effective lattice stress dissipation. The NaMn0.80Ti0.20PO4 exhibits an optimal JTD magnitude of σ2 = 0.009 and a 91.03% improvement in strain homogeneity compared to the pristine sample. These enhancements contribute to a high-capacity retention of 96.75% after 500 cycles at 2 C. (vs. 77.85% for NaMnPO4). This work establishes a universal paradigm to modulate the JTD in high-spin transition-metal cathodes, opening new avenues for high-stability cathode design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信